Philip Kocienski, ${ }^{*, a}$ Piotr Raubo, ${ }^{a}$ Justin K. Davis, ${ }^{a}$ F. Thomas Boyle, ${ }^{\boldsymbol{b}}$
Donna E. Davies ${ }^{c}$ and Audrey Richter ${ }^{c}$
${ }^{a}$ Department of Chemistry, The University, Southampton SO17 1BJ, UK
${ }^{b}$ Zeneca Pharmaceuticals, Mereside, Macclesfield, Cheshire SK10 4TG, UK
${ }^{\text {c }}$ CRC Wessex Medical Oncology Unit, Southampton General Hospital SO16 6 YD, UK

Metallated dihydropyran 9 and the dihydropyranone 10 previously used in a synthesis of the insect toxin pederin were adapted to the synthesis of $18-O$-methyl mycalamide B, the most potent derivative of the anti-tumour agents isolated from a sponge. Key steps in the synthesis include the oxidation of enol silane 11 from the more hindered face using dimethyldioxirane to introduce the hydroxy group at C-12 and the acylation of 6-lithio-3,4-dihydro- $2 H$-pyran 9 with oxalamide 8 to forge the N-(1-alkoxy-1alkyl)amide bridge. Biological tests in human tumour cell lines confirm the potent anti-proliferative effect of 18-O-methyl mycalamide B in $\mathbf{p M}$ concentrations.

Introduction

Mycalamides A 1 and B 2 were isolated in 1988 from a sponge of the genus Mycale collected from the Otago Harbour in New Zealand. ${ }^{1}$ Extensive mass spectrometry and NMR experiments ${ }^{2}$ revealed a close structural resemblance to the insect toxin pederin $3^{3,4}$ isolated from the blister beetle Paederus fuscipes. The unusual trioxabicyclo[4.4.0]decane ring system is formally derived from oxidative cyclisation involving the methoxy and hydroxy groups of pederin. Their kinship was further underscored when synthetic studies established that pederin and the mycalamides share the same absolute configuration. ${ }^{5}$ Recently, the pederin family has expanded with the discovery of onnamide A $4^{6.7}$ and the theopederins $5 a-e^{8}$

Scheme 1

(Scheme 1) from sponges of the genus Theonella. The significance of the mycalamides, onnamides and theopederins in sponge physiology is unclear although it has been suggested that the occurrence of closely related compounds in such taxonomically remote animals as sponges and terrestrial beetles may indicate connection by a common producer, possibly a symbiotic micro-organism. ${ }^{9}$

The mycalamides reveal potent in vitro cytotoxicity and in vivo antitumour efficacy against several leukemia and solid tumour model systems as well as antiviral activity. ${ }^{1}$ In addition,
mycalamide A blocks T-cell activation in mice and is 10 -fold more potent than FK-506 and 1000-fold more potent than cyclosporin A in this model. ${ }^{10}$ Structure-activity data have been gleaned from simple alkyl, acyl and silyl derivatives prepared ${ }^{11-14}$ from the naturally occurring mycalamides. For example, when the amidic NH and the $7-\mathrm{OH}$ were methylated, the activity was reduced by a factor of 10^{3} whereas methylation of the $17-\mathrm{OH}$ and $18-\mathrm{OH}$, the side-chain constitution found in pederin, increased activity by 10^{3}. It appears that the N-(1-alkoxy-1-alkyl)amide bridge plays a crucial role in the biological activity of the mycalamides, possibly by eliminative cleavage of the $\mathrm{C}-\mathrm{O}$ bond at $\mathrm{C}-10$ resulting in the formation of an acylimine which could subsequently act as an alkylating agent.
Mode of action studies ${ }^{11}$ confirm that the mycalamides, like pederin, are protein synthesis inhibitors. Mycalamide A also disrupted DNA metabolism but did not intercalate into DNA itself. A correlation between their relative ability to inhibit protein synthesis, cytotoxicity and their in vivo efficacy suggests that inhibition of protein synthesis may be a major determinant of their anti-tumour activity. ${ }^{11}$
Total syntheses of onnamide A^{15} and mycalamides A and B^{5} have been reported as well as syntheses of various fragments. ${ }^{16-19}$ We now report a synthesis of $18-O$-methyl mycalamide B 6 based on the retrosynthetic analysis shown in Scheme 2. The key step in the sequence is the acylation of

Scheme 2
lithiated dihydro- 2 H -pyran 9 by the ester group in 8 to forge the N-(1-alkoxy-1-alkyl)amide bridge in intermediate 7. In turn, the trioxabicyclo[4.4.0]decane $\mathbf{8}$ is constructed from the
dihydropyranone $\mathbf{1 0}$. Our choice of the key step and intermediates 9 and 10 is significant: together they were the foundation of our synthesis of pederin ${ }^{20}$ and since the second side of the bread takes less time to toast, we hoped that our pederin synthesis could be quickly adapted to the the synthesis of $18-O$-methyl mycalamide B 6 -the derivative with the highest anti-tumour potency identified to date. ${ }^{12}$

Results and discussion

Introduction of stereogenic centres at C-11, C-12 and C-13

Dihydropyranone 10 was prepared on a large scale from (S)-$(-)$-malic acid as described previously. ${ }^{20,21}$ In order to fuse a 1,3-dioxane ring onto dihydropyranone $\mathbf{1 0}$ we had to create three contiguous stereogenic centres on its upper periphery. First, a single carbon at $\mathrm{C}-11$ (mycalamide numbering) had to be introduced followed by a hydroxy function onto the same face at the adjacent carbon (C-12). The single carbon was appended with very high 1,3 -asymmetric induction by conjugate addition of tert-butyldimethylsilyl cyanide (TBSCN) to the dihydropyranone catalysed by tert-butyldimethylsilyl trifluoromethanesulfonate (TBSOTf) to give enol silane $\mathbf{1 1}$ in 97% yield (Scheme 3). A large number of conditions were

10

14a
$14 a$
+

14b

$19 \mathrm{R}=\mathrm{H}$
$20 \mathrm{R}=\mathrm{Me} 94 \%$

15

18

11

13

$+$
$+$

12b

16

17

Scheme 3 Reagents and Conditions:

A	97\%	TBSCN, TBSOTf, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 3 \mathrm{~h}$.
B	70\%	Oxone, 18-crown-6, acetone, $\mathrm{NaHCO}_{3}, \mathrm{PhH}-\mathrm{H}_{2} \mathrm{O}, 3-5^{\circ} \mathrm{C}$.
C	96\%	HF, MeCN, rt, 7 h .
D	94\%	$\mathrm{BH}_{3}{ }^{\circ} \mathrm{SMe}_{2}$, THF, $\mathrm{t}, 20 \mathrm{~min}$.
E	83\%	$\mathrm{HClO}_{4}, \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}, \Delta, 30 \mathrm{~h}$.
F	94\%	LAH, THF, $0^{\circ} \mathrm{C}, 10 \mathrm{mln} ; \Delta, 25 \mathrm{mln}$.
G	83\%	$\mathrm{PhCH}(\mathrm{OMe})_{2}, \mathrm{PTSA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 2 \mathrm{~h}$;
H	95\%	Swern oxidation.
1	94\%	$\mathrm{NaBH}(\mathrm{OAc})_{3}, \mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}, 0^{\circ} \mathrm{C}, 30 \mathrm{mln}$;
J	94\%	$\mathrm{Me}_{2} \mathrm{SO}_{4}, \mathrm{Bu}_{4} \mathrm{NHSO}_{4}, 50 \% \mathrm{NaOH}, \mathrm{PhMe}, \mathrm{rt}, 2 \mathrm{~h}$.

investigated for the critical oxidation of enol silane 11. Various epoxidising agents [peracids, ${ }^{22,23}$ peroxybenzimidic acid, ${ }^{24}$

2-benzenesulfonyl-3-(4-nitrophenyl)oxaziridine ${ }^{25}$] and dihydroxylating agents $\left(\mathrm{OsO}_{4}\right)$ invariably returned a mixture of α-hydroxyketones with the major product having the undesired stereochemistry at C-12. However, oxidation of the enol silane with dimethyldioxirane, ${ }^{26,27}$ generated in situ under phase transfer conditions, ${ }^{28}$ gave the diastereoisomeric oxiranes in a ratio of 3.5:1 in favour of the desired isomer 12a (70% yield). \dagger The oxiranes $\mathbf{1 2 a}, \mathrm{b}$ were easily separated by column chromatography and the desired crystalline isomer 12a could be stored for months in the cold without decomposition. Hydrolysis of 12a with HF then gave α-hydroxyketone 13 in 96% yield.
Introduction of the third stereogenic centre at C-13 by reduction of the ketone in 13 was not easy. In our original plan (Scheme 4) we intended to use the coordinating properties

Scheme 4
23
of the (2-methoxyethoxy)methyl group ${ }^{29-33}$ to first direct the stereochemistry of reduction and then later serve as a means for triggering 1,3 -dioxane ring formation under Lewis acid catalysis. Unfortunately, a wide range of metal hydride reducing agents [e.g. $\mathrm{ZnBH}_{4}, \mathrm{NaBH}_{4}, \mathrm{NaBH}_{4}-\mathrm{CeCl}_{3}$, LiBH -(sec- Bu$)_{3}, \mathrm{LiBHEt}_{3}, \mathrm{NaBH}(\mathrm{OAc})_{3}$] all returned the incorrect isomer $\mathbf{1 4 b}$ as the exclusive product. \ddagger Attempts to use singleelectron reducing conditions $\left(\mathrm{Mg}-\mathrm{MeOH}, \mathrm{SmI}_{2}, \mathrm{Ca}-\mathrm{NH}_{3}\right)$ gave messy reactions. The only reducing agents which gave appreciable amounts of the desired isomer were $\mathrm{NaBH}_{3} \mathrm{CN}$ in MeOH at room temp. ($\mathbf{1 4 a}: \mathbf{1 4 b}=1: 3,70 \%$ yield) and methylaluminium bis(2,6-di-tert-butyl-4-methylphenoxide)tert -BuMgCl in toluene ${ }^{34,35}$ at $0^{\circ} \mathrm{C}(\mathbf{1 4 a}: \mathbf{1 4 b}=2: 3,38 \%)$. When equally dismal results were later obtained in the attempt to cyclise 23 to 24 (Scheme 4), the route was abandoned in favour of the extended detour depicted in Scheme 3.
Reduction of the α-hydroxyketone 13 with $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}$ gave an inseparable mixture of diastereoisomeric alcohols ($14 \mathrm{a}: \mathbf{1 4 b}=1: 13,94 \%$ yield). $\&$ On treatment of the mixture
\dagger Previous workers have noted dramatic changes in facial selectivity of epoxidation using peroxybenzimidic acid in place of peracids ${ }^{39,40}$ but we are unaware of similar observations with dimethyldioxirane.
\ddagger Attempts to invert the stereochemistry of the highly hindered alcohol in $\mathbf{1 4 a}$ by a Mitsunobu reaction failed.
\S In our synthesis of pederin, ${ }^{20}$ the ketone i was reduced with NaBH_{4} in the presence of CeCl_{3} to give the desired equatorially oriented alcohol ii as the major product. However, with compound 13, the same conditions gave an unfavourable ratio of $\mathbf{1 4 a}: \mathbf{1 4 b}=1: 9(95 \%)$. With NaBH_{4} alone, the ratio was $1: 6$.

with perchloric acid in aqueous MeOH , the nitrile function in isomer $\mathbf{1 4 b}$ was selectively transformed to the ester 15 leaving its diastereoisomer 14a untouched whereupon chromatographic separation was easily achieved. After reduction of the ester function, triol 16 was converted into its benzylidene acetal derivative $17 \|$ and the remaining secondary alcohol function oxidised to the corresponding crystalline ketone 18. Now reduction of the ketone with $\mathrm{NaBH}(\mathrm{OAc})_{3}$ in the presence of CeCl_{3} was highly stereoselective ($25: 1$) leading to the desired stereochemistry at C-13 in alcohol 19. The stereochemistry of the reduction can be rationalised in terms of intramolecular delivery of hydride** in the conformer 25 (Scheme 5). Removal

Scheme 5
of minor impurities by crystallisation followed by O-methylation gave the crystalline methyl ether 20 whose relative configuration and conformation were assigned on the basis of the vicinal coupling constants for $12-\mathrm{H}$ and $13-\mathrm{H}$ ($J 2.1$ and 2.0 Hz respectively) which accord with equatorial disposition of all three protons at C-11, C-12 and C-13.

Construction of the 2,4,7-trioxabicyclo[4.4.0]decane ring

In the next phase of our synthesis, the benzylidene acetal was hydrolysed (Scheme 6, step A) and the C-13 secondary hydroxy function protected as its (2-methoxyethoxy)methyl (MEM) ether 28 by a standard three-step sequence. Dess-Martin oxidation followed by immediate acid-catalysed acetalisation with allyl alcohol was accompanied by partial destruction of the MEM ether. In order to complete the removal of the MEM group, ZnCl_{2} was added and the mixture heated for a further 5 h whereupon the diallyl acetal 31 was obtained in 70% yield for

- The faster rate of methanolysis of diastereoisomer $\mathbf{1 4 b}$ presumably reflects intramolecular addition of the C-13 hydroxy function to the cyano function to form the imino lactone iii which then undergoes hydrolysis and transesterification to the ester 15.

|| Benzylidenation of triol 16 was accompanied by formation of up to 15% of the dioxolane derivative iv. Separation of iv from the desired 1,3dioxane derivative 17 could only be achieved by selective tritylation of the primary alcohol in iv followed by column chromatography (see Experimental section) or iv was selectively destroyed during the succeeding oxidation (step H, Scheme 3).

iv

[^0]

20

$26 \mathrm{R}=\mathrm{H}$ 96\% B

30

33a,b

34a,b

Scheme 6 Reagents and Conditions:
A 99% PTSA, MeOH, $\Delta, 6 \mathrm{~h}$.
B $96 \% \mathrm{PvCl}, \mathrm{Pyr}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 4 \mathrm{~h}$.
C $98 \% \mathrm{MEMCI}, \mathrm{Bu}_{4} \mathrm{NI}, \mathrm{DMAP},(\text { i-Pr) })_{2} \mathrm{NEt}, \mathrm{PhMe}, 75-80^{\circ} \mathrm{C}, 15 \mathrm{~h}$.
D $96 \% \quad \mathrm{LAH}, \mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 25 \mathrm{~min}$.
E 94% Dess-Martin periodinane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 1 \mathrm{~h}$.
F $70 \% \quad \mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{OH}, \mathrm{PTSA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \Delta, 22 \mathrm{~h}$; then add $\mathrm{ZnCl}_{2}, \Delta, 5 \mathrm{~h}$.
G $88 \% \quad(\mathrm{HCHO})_{n}, \mathrm{HCl}(\mathrm{g}), \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 85 \mathrm{~min}$.
H $71 \% \quad$ RhCl[PPh $\left.]_{3}\right]_{3}$, DABCO, EtOH- $\mathrm{H}_{2} \mathrm{O}, \Delta, 1.75 \mathrm{~h} ; \mathrm{Hg}(\mathrm{OAc})_{2}, \mathrm{THF}-\mathrm{H}_{2} \mathrm{O}$.
$88 \% \mathrm{MsCl}, \mathrm{DMAP}, \mathrm{NEt}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2} ;$ TASF, $\mathrm{TMSN}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \rightarrow 70 \rightarrow 0^{\circ} \mathrm{C}, 8.5 \mathrm{~h}$.
12 steps, 32% overall
the two steps. The desired 1,3 -dioxane ring was then introduced in a single step on treatment of $\mathbf{3 1}$ with paraformaldehyde in the presence of HCl to give the allyl acetals $32 \mathrm{a}, \mathrm{b}$ in 88% yield as a separable mixture of diastereoisomers $(1: 4)$ along with a further 7% yield of the hemiacetals 33a,b ($2: 1$ mixture of diastereoisomers). Since deliberate attempts to secure 33a,b by acid-cataysed hydrolysis of 32a,b led to messy reactions, a milder two-step procedure was adopted which was reproducible and efficient. The allyl ether was first isomerised with Wilkinson's catalyst and the resultant enol ether hydrolysed with the aid of mercuric acetate ${ }^{36}$ to give the hemiacetals 33a,b in 71% yield, again as a $2: 1$ mixture of diastereoisomers.

The last hurdle in the sequence was displacement of the hydroxy group in 33a,b by an azido group. Attempts to use a Mitsunobu reaction failed to give the desired azides in a single step ${ }^{37}$ and so various two-step procedures were examined involving prior activation of the hydroxy group. The best of the established procedures examined had been used by Hong and Kishi-displacement of a mesylate by $\mathrm{Bu}_{4} \mathrm{NN}_{3}$-but in our hands the yields ranged from 20% (typically) to 72% (rarely) and we were unable to identify the cause of the caprice. We therefore developed a new method which, to our knowledge, is novel: the crude mesylate derived from the mixture of hemiacetals 33a,b was treated with trimethylsilyl azide $\left(\mathrm{TMSN}_{3}\right)$ in the presence of tris(dimethylamino)sulfonium difluorotrimethylsilicate (TASF) ${ }^{38}$ to give the azides 34a,b as a mixture of diastereoisomers in the ratio $1: 1$ to $1: 2$ depending on the reaction conditions. The isomers could be separated for purposes of characterisation but in practice it was best to carry the mixture of azides forward to the next stage of the synthesis.

Construction of the N-(1-alkoxy-1-alkyl)amide bridge

Catalytic reduction of the azides $\mathbf{3 4 a}, \mathrm{b}$ gave a sensitive mixture

of aminals (Scheme 7) which were acylated with methyl oxalyl chloride in the presence of 4-dimethylaminopyridine (DMAP) to afford the diastereoisomeric methyl oxalamides 35a,b (1:2) in 77% yield. The diastereoisomers were separated by column chromatography and the minor crystalline diastereoisomer 35a having the correct stereochemistry at $\mathrm{C}-10$ was added to a solution of the dihydro- 2 H -pyranyllithium reagent 9 in the presence of excess $N, N, N^{\prime}, N^{\prime}$-tetramethylethylenediamine (TMEDA) to give the acylated dihydro- 2 H -pyran derivative 37 in 64% yield. Reduction of the keto function with LiBH (sec$\mathrm{Bu})_{3}$ at $-95^{\circ} \mathrm{C}$ followed by acid-catalysed addition of MeOH to the dihydropyran gave a mixture of four diastereoisomeric hydroxy acetals which were separated by preparative thin layer chromatography after benzoylation. The two major diastereoisomers $39 \mathrm{a}(64 \%)$ and $39 \mathrm{~b}(28 \%)$ were assigned the $(6 R, 7 S)$ and ($6 R, 7 R$) stereochemistry, respectively, based on comparison of the chemical shifts of their 7-H signals with those previously observed in our synthesis of pederin. ${ }^{20}$ To complete the synthesis of $18-O$-methyl mycalamide B , the selenoxide derived from oxidation of 39 a was heated briefly to generate the C-4 methylene and the benzoate hydrolysed-both steps taking place in excellent yield. The product gave identical ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data to those reported for $18-O$-methyl mycalamide B by Perry and co-workers. ${ }^{12}$ By the identical procedure, 10 -epi-18-O-methyl mycalamide B 41 was prepared from the methyl oxalamide diastereoisomer 35b (Scheme 8) (see Experimental section).

Biological evaluation of 18-O-methyl mycalamide B

In standard mitogenesis assays using quiescent murine fibroblasts transfected with the human epidermal growth factor (EGF) receptor, $18-O$-methyl mycalamide B 6 inhibited DNA synthesis in response to 40 pm EGF with an IC_{50} of 0.4 ng ml^{-1} (range $0.3-0.5$). The compound showed similar potency when tested in anchorage-dependent growth assays using an epidermoid (A431), a colon (HT-29) or a mammary (MCF-7) carcinoma cell line. After four days growth with continuous exposure to the compound, IC_{50} values (mean, $\mathrm{ng} \mathrm{ml}^{-1}$) were A431: 0.14 (range 0.09-0.19); HT-29: 0.14 (range 0.13-0.15); MCF-7: 0.11 . Thus, the cytotoxicity of $18-O$-methyl mycalamide B was similar to that previously reported for mycalamides A and B. ${ }^{1,2}$ The latter inhibit the in vitro replication of murine lymphoma P 388 cells ($\mathrm{IC}_{50} 3.0 \pm 1.3$ and $0.7 \pm 0.3 \mathrm{ng}$ ml^{-1} respectively) and human HL-60, HT-29 and A549 cells $\left(\mathrm{IC}_{50}<5 \mathrm{nM}\right) .{ }^{11}$ In contrast, we found that 10 -epi-18-O-

Scheme 8 Reagents and Conditions:
A 47% lithium reagent 9, TMEDA, THF, $-80^{\circ} \mathrm{C}, 30 \mathrm{~min}$
B - $\operatorname{LIBH}(s-\mathrm{Bu})_{3}, \mathrm{THF},-95^{\circ} \mathrm{C}, 15 \mathrm{~min} ; \mathrm{MeOH}, \mathrm{CSA}, \mathrm{rt}, 1.75 \mathrm{~h}$;
C $68 \% \quad \mathrm{BzCl}, \mathrm{NEt}_{3}, \mathrm{DMAP}^{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 9 \mathrm{~h}$; separation.

7 steps, 21\% overall
methyl mycalamide B 41 was over three orders of magnitude less potent than its diastereoisomer. In mitogenesis assays, it had a mean IC_{50} value ($\mathrm{ng} \mathrm{ml}^{-1}$) of 1350 (range 1200-1500) and in proliferation assays mean IC_{50} values were A431: 575 (range 480-670); HT-29: 450 (range 380-520); MCF-7: 355 (range $290-420$). Full details of the biological activity of $18-O$-methyl mycalamide B and its 10 -epi diastereoisomer will be published elsewhere.

Experimental

IR spectra were recorded using a Perkin-Elmer 1600 series FTIR spectrophotometer using a thin film supported on NaCl plates or KBr discs where stated. Details are reported as $v_{\text {max }}$ in cm^{-1}, followed by an intensity descriptor: $\mathrm{s}=$ strong, $\mathrm{m}=$ medium, $\mathrm{w}=$ weak or $\mathrm{br}=$ broad. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in Fourier Transform mode at the field strength specified. All spectra were obtained in CDCl_{3} solution in 5 mm diameter tubes, and the chemical shift in ppm is quoted relative to the residual signals of chloroform $\left(\delta_{\mathrm{H}}=7.27\right.$ or $\delta_{\mathrm{C}}=$ 77.2) as the internal standard. Multiplicities in the ${ }^{1} \mathrm{H}$ NMR spectra are described as: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet and $\mathrm{br}=$ broad. Coupling con-
stants (J) are reported in Hz . Numbers in parentheses following the chemical shift in the ${ }^{13} \mathrm{C}$ NMR spectra refer to the number of protons attached to that carbon as revealed by the Distortionless Enhancement by Phase Transfer (DEPT) spectral editing technique, with secondary pulses at 90° and 135°. Mycalamide numbering was used throughout in assigning NMR signals. Low (LRMS) and high (HRMS) resolution mass spectra were run on a VG 70-250-SE spectrometer. Ion mass/charge (m / z) ratios are reported as values in atomic mass units followed, in parentheses, by the peak intensity relative to the base peak (100%). Mass spectra were recorded on samples judged to be $\geqslant 95 \%$ pure by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy unless otherwise stated.

(2S,6R)-4-[(tert-Butyldimethylsilyl)oxy]-2-cyano-6-[(2S)-2,3-

 dimethoxypropyl]-5,5-dimethyl-5,6-dihydro- 2 H -oxine 11A solution of enone $10(5.28 \mathrm{~g}, 23.13 \mathrm{mmol})$ and tertbutyldimethylsilyl cyanide ($3.54 \mathrm{~g}, 24.63 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (60 cm^{3}) was stirred at $0^{\circ} \mathrm{C}$ under N_{2}. tert-Butyldimethylsilyl triflate ($0.16 \mathrm{~cm}^{3}, 0.7 \mathrm{mmol}, 0.03$ equiv.) was added. The reaction mixture was stirred for 3 h and then triethylamine (0.63 $\mathrm{cm}^{3}, 4.53 \mathrm{mmol}$) was added. The mixture was poured onto sat. aqueous $\mathrm{NaHCO}_{3}\left(50 \mathrm{~cm}^{3}\right)$. The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \times 100 \mathrm{~cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by chromatography on $\mathrm{SiO}_{2}(80 \mathrm{~g}$, hexanes: EtOAc $5-10 \%$) to give the silyl enol ether $11(8.29 \mathrm{~g}$, 97%) as a colourless oil, $[\alpha]_{\mathrm{D}}-34.1$ (c 2.23 in CHCl_{3}); $v_{\max }($ film $) / \mathrm{cm}^{-1} 1658(\mathrm{~s}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.02(1 \mathrm{H}, \mathrm{d}, J$ $4.1,11-\mathrm{H}), 4.60(1 \mathrm{H}, \mathrm{d}, J 4.1,12-\mathrm{H}), 3.67(1 \mathrm{H}, \mathrm{dd}, J 10.0$ and $2.0,15-\mathrm{H}), 3.64-3.48\left(3 \mathrm{H}, \mathrm{m}, 17-\mathrm{H}, 18-\mathrm{H}_{2}\right), 3.42(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $3.40(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 1.91-1.60\left(2 \mathrm{H}, \mathrm{m}, 16-\mathrm{H}_{2}\right), 1.01(6 \mathrm{H}, \mathrm{s}, 14-$ Me), $0.95\left(9 \mathrm{H}, \mathrm{s}\right.$, tert- BuSi), 0.21 and 0.18 (3 H each, s, $\mathrm{Me}_{2} \mathrm{Si}$); $\delta_{\mathrm{C}}\left(67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 159.9(0), 118.4$ (0), 94.1 (1), 78.4 (1), 77.8 (1), 72.9 (2), 63.3 (1), 59.4 (3), 57.2 (3), 39.3 (0), 30.3 (2), 25.7 (3), $20.8(3), 19.3(3), 18.3(0),-4.9(3),-4.2(3) ; m / z\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 387$ $\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 26 \%\right], 370\left[(\mathrm{M}+\mathrm{H})^{+}, 5\right], 343$ (100) (EI, Found: $\mathrm{M}^{+}, 369.2333 . \mathrm{C}_{19} \mathrm{H}_{35} \mathrm{NO}_{4} \mathrm{Si}$ requires $M, 386.2335$).

($2 R, 3 S, 4 S, 6 R$)-4-[(tert-Butyldimethylsilyl)oxy]-2-cyano-3,4-epoxy-6-[($2 S)$-2,3-dimethoxypropyl]-5,5-dimethyloxane 12a

 Oxone ${ }^{\text {E }}$ was added in 7 portions ($7 \times 26 \mathrm{~g}, 296 \mathrm{mmol}$) in 30 min intervals to a vigorously stirred mixture of enol ether $11(8.25 \mathrm{~g}$, 22.3 mmol), 18 -crown-6 ($850 \mathrm{mg}, 3.2 \mathrm{mmol}, 0.15$ equiv.), $\mathrm{NaHCO}_{3}(85 \mathrm{~g})$, acetone ($105 \mathrm{~cm}^{3}$), benzene ($400 \mathrm{~cm}^{3}$) and water $\left(530 \mathrm{~cm}^{3}\right)$ at $5^{\circ} \mathrm{C}$. The reaction mixture was stirred at 3$5^{\circ} \mathrm{C}$ for 14 h and allowed to warm up to $14^{\circ} \mathrm{C}$ over 6 h . Then the mixture was treated with water $\left(750 \mathrm{~cm}^{3}\right)$ and the layers were separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($2 \times 300 \mathrm{~cm}^{3}$). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was chromatographed on $\mathrm{SiO}_{2}\left(150 \mathrm{~g}\right.$, hexanes : ether $5-80 \%$ with $0.1 \% \mathrm{Et}_{3} \mathrm{~N}$) to give the epoxide 12a as a colourless oil. Crystallisation from pentane gave the diastereoisomerically pure epoxide $\mathbf{1 2 a}(6.00 \mathrm{~g}, 70 \%)$ as white crystals, $\mathrm{mp} 64-66^{\circ} \mathrm{C}$ (pentane); $[\alpha]_{\mathrm{D}}-1.9$ (c 1.79 in CHCl_{3}); $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 3020$ (s), 2400 (w), 1217 (s), 758 (s); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.97(1 \mathrm{H}, \mathrm{d}, J 3.9,11-\mathrm{H}), 3.56-3.35(4 \mathrm{H}$, $\mathrm{m}), 3.43(1 \mathrm{H}, \mathrm{d}, J 3.9,12-\mathrm{H}), 3.39(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.38(3 \mathrm{H}, \mathrm{s}$, OMe), $1.75(1 \mathrm{H}$, ddd, $J 1.7,8.7$ and $14.5,16-\mathrm{H}), 1.56(1 \mathrm{H}$, ddd, $J 4.6,10.4$ and $14.5,16-\mathrm{H}), 1.07(3 \mathrm{H}, \mathrm{s}, 14-\mathrm{Me}), 1.02(3 \mathrm{H}, \mathrm{s}, 14-$ $\mathrm{Me}), 0.90\left(9 \mathrm{H}, \mathrm{s}\right.$, tert-BuSi), 0.09 and $0.18\left(3 \mathrm{H}\right.$ each, s, $\left.\mathrm{Me}_{2} \mathrm{Si}\right)$; $\delta_{\mathrm{C}}\left(67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 115.4(0), 86.1(0), 77.8$ (1), 75.4 (1), 72.8 (2), 63.2 (1), 59.3 (3), 58.3 (1), 57.1 (3), 39.0 (0), 30.2 (2), 25.7 (3), 18.6(3), $17.9(0), 16.6(3),-3.4(3),-3.5(3) ; m / z\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 403$ $\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 100 \%\right], 386\left[(\mathrm{M}+\mathrm{H})^{+}, 54\right]$ [Found: $(\mathrm{M}+$ $\mathrm{H})^{+}, \mathbf{3 8 6 . 2 3 7 6} . \mathrm{C}_{19} \mathrm{H}_{36} \mathrm{NO}_{5} \mathrm{Si}$ requires $\left.M, 386.2363\right]$.
(2R,3S,6R)-2-Cyano-3-hydroxy-6-[(2S)-2,3-dimethoxypropyl]-5,5-dimethyloxan-4-one 13

A solution of $\mathrm{HF}\left(40 \%, 5 \mathrm{~cm}^{3}\right)$ in $\mathrm{MeCN}\left(20 \mathrm{~cm}^{3}\right)$ was added to
a stirred solution of epoxide $\mathbf{1 2 a}(5.84 \mathrm{~g}, 15.15 \mathrm{mmol})$ in MeCN $\left(30 \mathrm{~cm}^{3}\right)$. The reaction mixture was stirred for 7 h at room temp., then poured into sat. aqueous NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 150 \mathrm{~cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was chromatographed on $\mathrm{SiO}_{2}(100 \mathrm{~g}$, hexanes: EtOAc $10-50 \%)$ to give the hydroxy ketone $13(3.95 \mathrm{~g}, 96 \%)$ as a colourless oil which solidified on refrigeration (mp $38-42{ }^{\circ} \mathrm{C}$); $[\alpha]_{\mathrm{D}}+102.2$ (c 1.0 in CHCl_{3}); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3478$ (br s), 3016-2829 (s), 1721 (s), 1467 (s), 1393 (s), 1340 (m), 1291 (m), 1248 (m), $1220(\mathrm{~s}), 1093(\mathrm{~s}) ; \delta_{\mathrm{H}}(270$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.27(1 \mathrm{H}, \mathrm{d}, J 7.9,11-\mathrm{H}), 4.64(1 \mathrm{H}, \mathrm{dd}, J 4.8$ and $7.9,12-\mathrm{H}), 3.91(1 \mathrm{H}, \mathrm{d}, J 4.8, \mathrm{OH}), 3.83(1 \mathrm{H}, \mathrm{dd}, J 9.7$ and 2.4 , 15-H), 3.58-3.34 ($3 \mathrm{H}, \mathrm{m}$, partially concealed, $17-\mathrm{H}, 18-\mathrm{H}_{2}$), 3.41 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.38 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 1.94 ($1 \mathrm{H}, \mathrm{m}, 16-\mathrm{H}$), 1.84 (1 H, ddd $, J 14.8,8.1$ and $2.4,16-\mathrm{H}), 1.24$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 1.14 (3 H , $\mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{C}}\left(67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 208.2$ (0), 114.3 (0), 80.3 (1), 77.3 (1), 72.6 (1), 71.3 (1), 69.1 (1), 59.3 (3), 57.3 (3), 49.7 (0), 30.2 (2), 19.1 (3), 18.9 (3); $m / z\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 289\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 100 \%\right]$ (Found: C, 57.52; H, 7.77; N, 5.28. $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{5}$ requires C, $57.55 ; \mathrm{H}, 7.80 ; \mathrm{N}, 5.16 \%)$.

Reduction of ketone 13

To a stirred solution of ketone $13(1.88 \mathrm{~g}, 6.93 \mathrm{mmol})$ in THF $\left(40 \mathrm{~cm}^{3}\right)$ at room temp. under N_{2} was added $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}(0.9$ $\mathrm{cm}^{3}, 9.18 \mathrm{mmol}$) over 30 s . The temperature of the reaction mixture rose to $35^{\circ} \mathrm{C}$. The solution was stirred for 20 min , poured into sat. aqueous $\mathrm{NaHCO}_{3}\left(60 \mathrm{~cm}^{3}\right)$ and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 100 \mathrm{~cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was filtered through a pad of $\mathrm{SiO}_{2}(2 \mathrm{~g})$ to give the diols $14 \mathrm{a}, \mathrm{b}$ ($1: 13$ mixture of $\mathrm{C}-4$ epimers, $1.78 \mathrm{~g}, 94 \%$) as a white solid. For analysis both isomers were separated by chromatography on $\mathrm{SiO}_{2}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}, 1-5 \%\right)$.
($2 R, 3 R, 4 R, 6 R$)-2-Cyano-6-[(2S)-2,3-dimethoxypropyl]-5,5-dimethyloxane-3,4-diol 14b. Mp $110-112^{\circ} \mathrm{C}$ (AcOEt-hexanes); $[\alpha]_{\mathrm{D}}+86.3\left(c 0.5\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3440(\mathrm{br} \mathrm{s})$, 3016-2830 (s), 1475 (s), 1464 (s), 1394 (s), 1371 (s), 1292 (s), 1260 (s), 1229 (s), 1073 (s); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.80(1 \mathrm{H}, \mathrm{d}, J$ $6.75,11-\mathrm{H}), 4.03(1 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}), 3.94(1 \mathrm{H}, \mathrm{dd}, J 2.4$ and 10.3 , $15-\mathrm{H})$, $3.65-3.37$ ($4 \mathrm{H}, \mathrm{m}, 13-\mathrm{H}, 17-\mathrm{H}, 18-\mathrm{H}_{2}$), 3.42 ($3 \mathrm{H}, \mathrm{s}$, $\mathrm{OMe}), 3.40(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.07\left(1 \mathrm{H}, \mathrm{d}, J 9.2, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchange), 2.58 ($1 \mathrm{H}, \mathrm{dd}, J 2.0$ and $3.7, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}$ exchange), $1.80-1.60\left(2 \mathrm{H}, \mathrm{m}, 16-\mathrm{H}_{2}\right), 1.02(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 0.96(3 \mathrm{H}, \mathrm{s}$, $\mathrm{OMe}) ; \delta_{\mathrm{C}}\left(67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 118.0$ (0), 77.9 (1), 75.9 (1), 72.8 (2), 72.5 (1), 66.2 (1), 63.9 (1), 59.4 (3), 57.2 (3), 38.4 (0), 29.2 (2), 23.2 (3), $18.8(3) ; m / z\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 291\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 100 \%\right]$, $274\left[(\mathrm{M}+\mathrm{H})^{+}, 10 \%\right]$ (Found: C, $56.70 ; \mathrm{H}, 8.54 ; \mathrm{N}, 4.97$ $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{NO}_{5}$ requires C, $57.13 ; \mathrm{H}, 8.48 ; \mathrm{N}, 5.12 \%$).
($2 R, 3 R, 4 S, 6 R$)-2-Cyano-6-[(2S)-2,3-dimethoxypropyl]-5,5-dimethyloxane-3,4-diol 14a. $[\alpha]_{\mathrm{D}}+106.2$ (c 1.9 in CHCl_{3}); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3424(\mathrm{br} \mathrm{s}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.89(1 \mathrm{H}, \mathrm{d}, J$ $6.2,11-\mathrm{H}), 4.47(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 3.89(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 3.72(1 \mathrm{H}, \mathrm{dd}$, $J 6.0$ and $9.5,12-\mathrm{H}), 3.58-3.36(5 \mathrm{H}, \mathrm{m}), 3.37(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.36$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $1.80(1 \mathrm{H}$, ddd, $J 1.8,7.9$ and $14.1,16-\mathrm{H}$), 1.68 (1 H, ddd, $J 3.9,10.0$ and 14.3, 16-H), 0.86 and 0.96 (3 H each, s, $14-\mathrm{Me}) ; \delta_{\mathrm{C}}\left(67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 116.4$ (0), 78.9 (1), 77.8 (1), 77.1 (1), 72.8 (2), 69.0 (1), 66.9 (1), 59.3 (3), 57.1 (3), 40.1 (0), 29.5 (2), $22.5(3), 13.2(3) ; m / z\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 291\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 100 \%\right], 274$ $\left[(\mathrm{M}+\mathrm{H})^{+}, 45\right]$.

(2R,3R,4R,6R)-6-[(2S)-2,3-Dimethoxypropyl]-5,5-dimethyl-2-methoxycarbonyloxane-3,4-diol 15

A solution of perchloric acid ($2 \mathrm{~cm}^{3}, 60 \%$) in $\mathrm{MeOH}\left(30 \mathrm{~cm}^{3}\right)$ was added to a stirred solution of a mixture of nitriles 14a,b ($2.71 \mathrm{~g}, 9.9 \mathrm{~mol}, 13: 1$ mixture of isomers) in $\mathrm{MeOH}\left(40 \mathrm{~cm}^{3}\right)$. The reaction mixture was heated at reflux for 30 h , cooled to room temp., diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(200 \mathrm{~cm}^{3}\right)$ and washed with sat. aqueous $\mathrm{NaHCO}_{3}\left(150 \mathrm{~cm}^{3}\right)$. The phases were separated and the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \times 100 \mathrm{~cm}^{3}\right)$, The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated.

The residue was chromatographed on $\mathrm{SiO}_{2}\left(75 \mathrm{~g}, \mathrm{CH}_{2} \mathrm{Cl}_{2}-\right.$ $\mathrm{MeOH}, 1-5 \%)$ to give the ester $15(2.53 \mathrm{~g}, 83 \%)$ as a colourless oil along with recovered starting material 14a,b ($340 \mathrm{mg}, 13 \%$), $[\alpha]_{\mathrm{D}}+70.8$ (c 1.0 in CHCl_{3}); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3442$ (br s), 3012-2828 (s), 1751 (s), 1708 (s), 1475 (m), 1439 (m), 1392 (m), 1371 (m), 1341 (m), 1290 (s), 1231 (s), 1202 (s), 1121 (s), 1088 (s), $1046(\mathrm{~s}), 922(\mathrm{~m}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.44(1 \mathrm{H}, \mathrm{d}, J 6.2,11-$ $\mathrm{H}), 4.23-4.15(2 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}+\mathrm{OH}$, appeared as $1 \mathrm{H}, \mathrm{dd}, J 6.75$ and 2.4, after treatment with $\left.\mathrm{D}_{2} \mathrm{O}\right)$, 3.67-3.35 $(4 \mathrm{H}, \mathrm{m}$, overlapping), $3.82(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.41$ ($6 \mathrm{H}, \mathrm{s}, 2$ overlapping $\mathrm{OMe}), 2.31\left(1 \mathrm{H}, \mathrm{dd}, J 4.1\right.$ and $1.5, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}$ exchange), 1.63 (2 $\mathrm{H}, \mathrm{m}, 16-\mathrm{H}_{2}$) , 0.98 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 0.96 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$); $\delta_{\mathrm{C}}(67.5 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 173.8$ (0), 78.1 (1), 77.3 (1), 73.6 (2), 71.6 (1), 71.5 (1), 67.5 (1), 59.4 (3), 57.2 (3), 52.4 (3), 38.5 (0), 29.8 (2), 23.6 (3), $19.4(3) ; m / z\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 324\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 100 \%\right], 307[(\mathrm{M}+$ $\mathrm{H}^{+}, 83$], 292 (15) [Found: $(\mathrm{M}+\mathrm{H})^{+}, 307.1747 . \mathrm{C}_{14} \mathrm{H}_{27} \mathrm{O}_{7}$ requires $M, 307.1758]$.

($2 R, 3 R, 4 R, 6 R$)-2-(Hydroxymethyl)-6-[(2S)-2,3-dimethoxy-propyl]-5,5-dimethyloxane-3,4-diol 16

Lithium aluminium hydride (LAH) ($440 \mathrm{mg}, 10.6 \mathrm{mmol}$) was added to a stirred solution of ester $15(2.1 \mathrm{~g}, 6.85 \mathrm{mmol})$ in THF $\left(62 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. After 10 min the reaction mixture was heated under reflux for 25 min , cooled to $0^{\circ} \mathrm{C}$ and carefully quenched with a mixture of water $\left(4 \mathrm{~cm}^{3}\right)$ and THF $\left(10 \mathrm{~cm}^{3}\right)$. The mixture was stirred for 2 h whereupon the white milky suspension was concentrated in vacuo. The residue was treated with MeOH (250 cm^{3}) and filtered through a pad of Celite. The filtrate was concentrated and the residue chromatographed on $\mathrm{SiO}_{2}(14 \mathrm{~g}$, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH} 2-20 \%\right)$ to give the triol $16(1.8 \mathrm{~g}, 94 \%)$ as a white solid, mp $124-125^{\circ} \mathrm{C}$ (ethyl acetate-hexanes); $[\alpha]_{\mathrm{D}}$ $+78.8\left(c 1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3624-3425(\mathrm{br} \mathrm{s})$, 3011-2829 (s), 1464 (m), 1390 (m), 1368 (m), 1337 (m), 1214 (s), 1091 (s), 1060 (s), 1034 (s), 968 (m), $925(\mathrm{~m}) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$ 4.20-4.10 ($2 \mathrm{H}, \mathrm{m}$, overlapping), 4.06-3.96 ($1 \mathrm{H}, \mathrm{m}$), $3.82(1 \mathrm{H}$, dd, $J 10.1$ and 3.4$), 3.73(1 \mathrm{H}, \mathrm{m}$, on treatment with $\mathrm{D}_{2} \mathrm{O}$ to dd, $J 13.8$ and $\left.4.0,10-\mathrm{H}\right), 3.63-3.35(3 \mathrm{H}, \mathrm{m}$, overlapping), $3.42(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.39(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.92(1 \mathrm{H}$, $\mathrm{d}, J 4.2, \mathrm{D}_{2} \mathrm{O}$ exchange, OH$), 2.72\left(1 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{D}_{2} \mathrm{O}\right.$ exchange), $1.67\left(2 \mathrm{H}, \mathrm{m}, 16-\mathrm{H}_{2}\right), 0.99(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 0.97(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}) ; \delta_{\mathrm{C}}\left(67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 78.4$ (1), 76.3 (1), 75.6 (1), 74.9 (2), 69.1 (1), 66.8 (1), 59.9 (2), 59.3 (3), 57.3 (3), 38.4 (0), 30.5 (2), 23.3 (3), 19.8 (3); $m / z\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 296\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 60 \%\right], 279$ $\left[(\mathrm{M}+\mathrm{H})^{+}, 100\right]$ (Found: $\mathrm{C}, 55.48 ; \mathrm{H}, 9.10 . \mathrm{C}_{13} \mathrm{H}_{26} \mathrm{O}_{6}$ requires C, $56.10 ; \mathrm{H}, 9.42 \%$).

($1 R, 6 R, 8 R, 10 R)-9,9-D i m e t h y l-8-[(2 S)$-2,3-dimethoxypropyl]-3-phenyl-2,4,7-trioxabicyclo[4.4.0]decan-10-ol 17

A solution of triol $16(1.8 \mathrm{~g}, 6.47 \mathrm{mmol})$, benzaldehyde dimethyl acetal ($1.7 \mathrm{~cm}^{3}, 11.3 \mathrm{mmol}, 1.7$ equiv.) and toluene-p-sulfonic acid (PTSA) ($43 \mathrm{mg}, 0.23 \mathrm{mmol}, 0.035$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(62$ cm^{3}) was stirred at room temp. for 2 h . Solid $\mathrm{NaHCO}_{3}(3 \mathrm{~g})$ was added and then the mixture was treated with solid MgSO_{4} and filtered through a pad of Celite. The filtrate was concentrated and the crude mixture of isomeric 6 - and 5 -membered ring benzylidene acetals (5.2:1) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ and treated with pyridine ($0.25 \mathrm{~cm}^{3}, 3.09 \mathrm{mmol}$) and $\mathrm{Ph}_{3} \mathrm{CCl}$ ($0.4 \mathrm{~g}, 1.43 \mathrm{mmol}, 0.22$ equiv.). The reaction mixture was stirred at room temp. overnight, poured into sat. aqueous NaHCO_{3} ($20 \mathrm{~cm}^{3}$) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 50 \mathrm{~cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was chromatographed on $\mathrm{SiO}_{2}(60 \mathrm{~g}$, hexanes: AcOEt $20-80 \%$) to give the major 6 -membered benzylidene acetal 17 $(1.96 \mathrm{~g}, 83 \%)$ as a colourless oil, $[\alpha]_{\mathrm{D}}+55.8\left(c 1.27 \mathrm{in} \mathrm{CHCl}_{3}\right)$; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3473$ (s), 1454 (s), 1401 (s), 1367 (s), 1104 (s); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.45-7.55(2 \mathrm{H}, \mathrm{m}), 7.30-7.45(3 \mathrm{H}, \mathrm{m})$, $5.47(1 \mathrm{H}, \mathrm{s}, \mathrm{Ph}-\mathrm{CH}), 4.25(1 \mathrm{H}, \mathrm{dd}, J 1.4$ and $12.6,10-\mathrm{H}), 4.15(1$ $\mathrm{H}, \mathrm{dd}, J 1.7$ and $4.1,12-\mathrm{H}), 4.08$ ($1 \mathrm{H}, \mathrm{dd}, J 2.1$ and $12.6,10-\mathrm{H}$), 3.81 (1 H , dd, J3.7 and 12.4, $15-\mathrm{H}$), $3.69(1 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}), 3.68$ (1 $\mathrm{H}, \mathrm{dd}, J 4.1$ and $10.7,13-\mathrm{H}$), $3.55(1 \mathrm{H}, \mathrm{dd}, J 3.5$ and 10.2 , 18-
H), 3.49 (1 H , dd, $J 4.4$ and $10.2,18-\mathrm{H}$), 3.41 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.39 $(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.31-3.43(1 \mathrm{H}, \mathrm{m}, 17-\mathrm{H}), 2.39(1 \mathrm{H}, \mathrm{d}, J 10.2$, $\mathrm{OH}), 1.97(1 \mathrm{H}$, ddd, $J 5.2,12.4$ and $14.7,16-\mathrm{H}), 1.75(1 \mathrm{H}$, ddd, $J 3.9,7.0$ and $14.7,16-\mathrm{H}), 0.97$ and 1.27 (3 H each, $\mathrm{s}, 14-\mathrm{Me}$); $\delta_{\mathrm{C}}\left(67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 139.2$ (0), 129.2 (1), 128.5 (1), 127.0 (1), 101.7 (1), 80.7 (1), 78.9 (1), 75.3 (1), 73.9 (2), 71.9 (1), 70.3 (2), 63.6 (1), 58.9 (3), 57.4 (3), 37.8 (0), 27.7 (2), 24.6 (3), 22.8 (3); $m / z\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 384\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 10 \%\right], 367\left[(\mathrm{M}+\mathrm{H})^{+}\right.$, 100] [Found: $(\mathrm{M}+\mathrm{H})^{+}, 367.2130 . \mathrm{C}_{20} \mathrm{H}_{31} \mathrm{O}_{6}$ requires M, 367.2121].

The following signals attributed to the dioxolane isomer iv were gleaned from the mixture: $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) 5.58(1 \mathrm{H}$, $\mathrm{s}, \mathrm{PhCH}), 3.18(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.07(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 0.95(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}), 0.72(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{c}}\left(67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 129.4$ (1), 128.5 (1), 127.2 (1), 102.6 (1), 82.2 (1), 78.6 (1), 74.5 (2), 73.3 (1), 71.6 (1), 71.2 (1), 62.2 (2), 58.9 (3), 57.0 (3), 36.0 (0), 31.1 (2), 23.7 (3), 20.6 (3).

($1 R, 6 R, 8 R)$-9,9-Dimethyl-8-[(2S)-2,3-dimethoxypropyl]-3-phenyl-2,4,7-trioxabicyclo[4.4.0]decan-10-one 18

To a stirred solution of oxalyl chloride $\left(0.55 \mathrm{~cm}^{3}, 6.33 \mathrm{mmol}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(32 \mathrm{~cm}^{3}\right)$ at $-55^{\circ} \mathrm{C}$ under N_{2} was added dropwise a solution of DMSO ($1 \mathrm{~cm}^{3}, 14 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(8 \mathrm{~cm}^{3}\right)$ over 5 min . The reaction mixture was cooled to $-65^{\circ} \mathrm{C}$ and stirred for 5 min whereupon a solution of alcohol $17(2.03 \mathrm{~g}, 5.53 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(12 \mathrm{~cm}^{3}\right)$ was added dropwise over 5 min . The resulting white suspension was stirred for 5 min , cooled to $-78^{\circ} \mathrm{C}$ and treated with $\mathrm{Et}_{3} \mathrm{~N}\left(4 \mathrm{~cm}^{3}, 28.7 \mathrm{mmol}\right.$, 5.2 equiv. $)$. The reaction mixture was allowed to warm up to $-10^{\circ} \mathrm{C}$ over 2.5 h and poured into ice-cooled sat. aqueous $\mathrm{NaHCO}_{3}\left(100 \mathrm{~cm}^{3}\right)$. The phases were separated and the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \times 100 \mathrm{~cm}^{3}\right)$. The combined extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was chromatographed on SiO_{2} (30 g , hexanes: AcOEt $20-40 \%$) to give the ketone $18(1.92 \mathrm{~g}, 95 \%)$ as a white solid, $\mathrm{mp} 55-56^{\circ} \mathrm{C}$ (hexanes); $[\alpha]_{\mathrm{D}}-14.2$ (c 1.0 in CHCl_{3}); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ 3013-2831 (s), 1725 (s), 1458 (m), $1390(\mathrm{~m}), 1307(\mathrm{~m}), 1240(\mathrm{~m})$, $1163(\mathrm{~m}), 1096(\mathrm{~s}), 995(\mathrm{~m}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.56(2 \mathrm{H}, \mathrm{m}$, Ph), $7.40-7.32(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.56(1 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}), 4.60(1 \mathrm{H}, \mathrm{dd}, J$ 9.8 and $4.2,15-\mathrm{H}), 4.37(1 \mathrm{H}, \mathrm{dd}, J 12.9$ and $1.4,10-\mathrm{H}), 4.35$ ($1 \mathrm{H}, \mathrm{d}, J 2.6,12-\mathrm{H}), 4.13(1 \mathrm{H}, \mathrm{dd}, J 12.8$ and $2.1,10-\mathrm{H}$), $3.89(1 \mathrm{H}$, ddd, $J 2.3,2.3$ and $1.8,11-\mathrm{H}), 3.56-3.51(3 \mathrm{H}, \mathrm{m}$, 17-H, $18-\mathrm{H}_{2}$), 3.42 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.31 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 1.78$1.70\left(2 \mathrm{H}, \mathrm{m}, 16-\mathrm{H}_{2}\right), 1.35(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.08(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$; $\delta_{\mathrm{C}}\left(67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 207.4(0), 137.7$ (0), 129.4 (1), 128.4 (1), 126.4 (1), 100.8 (1), 79.2 (1), 79.0 (1), 78.1 (1), 72.8 (2), 71.2 (2), 65.5 (1), 59.3 (3), 57.3 (3), 48.9 (0), 29.7 (2), 24.3 (3), 19.4 (3); $m / z\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 382\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 90 \%\right], 365\left[(\mathrm{M}+\mathrm{H})^{+}\right.$, 100], 229 (42) (Found: C, 65.91; H, 7.88. $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{6}$ requires C, $65.92 ; \mathrm{H}, 7.74 \%$).
(1R,6R,8R,10S)-8-[(2S)-2,3-Dimethoxypropyl]-9,9-dimethyl-3-phenyl-2,4,7-trioxabicyclo[4.4.0]decan-10-ol 19
Solid $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(1.14 \mathrm{~g}, 3.05 \mathrm{mmol})$ was added to a stirred solution of ketone 18 ($973 \mathrm{mg}, 2.67 \mathrm{mmol}$) in $\mathrm{MeOH}\left(35 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. The solution was stirred for 20 min and solid $\mathrm{NaBH}(\mathrm{OAc})_{3}(1.87 \mathrm{~g}, 8.84 \mathrm{mmol})$ was added. The reaction mixture was stirred for 30 min and treated with sat. aqueous $\mathrm{NaHCO}_{3}\left(100 \mathrm{~cm}^{3}\right)$. Methanol was removed in vacuo and the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(4 \times 50 \mathrm{~cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give a crude alcohol 19 as a $25: 1$ mixture of $\mathrm{C}-10$ epimers (NMR). Purification by chromatography on SiO_{2} eluting with ethyl acetate/hexanes ($3: 7$) gave the diastereoisomerically pure alcohol 19 as a colourless oil ($919 \mathrm{mg}, 2.51 \mathrm{mmol}, 94 \%$) which crystallised from ethyl acetate-hexanes as white needles, mp $107-108{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}+13\left(c 1.0\right.$ in $\left.\mathrm{CCl}_{4}\right) ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 3637$ (m), 3462 (br m), 2778-2829 (s), 1477 (m), 1455 (m), 1398 (m), $1381(\mathrm{~m}), 1310(\mathrm{~m}), 1213(\mathrm{~m}), 1191(\mathrm{~m}), 1115(\mathrm{~s}), 1099(\mathrm{~s}), 1003$ (s); $\delta_{\mathrm{H}}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right.$, referenced to 7.13 ppm$) 7.72-7.63(2 \mathrm{H}, \mathrm{m} \mathrm{Ph})$,
7.05-7.23 ($3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$, coincident with $\mathrm{C}_{6} \mathrm{H}_{6}$ reference signal), $5.29(1 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}), 4.19(1 \mathrm{H}, \mathrm{dd}, J 13.2$ and $2.3,10-\mathrm{H}), 3.75(1$ H , dd, $J 8.4$ and 3.2), $3.66(1 \mathrm{H}, \mathrm{m}), 3.64(1 \mathrm{H}, \mathrm{dd}, J 13.3$ and 2.1 , partially concealed), $3.54(1 \mathrm{H}, \mathrm{t}, J 2.1), 3.50(1 \mathrm{H}, \mathrm{t}, J 3.5), 3.43$ (1 H , dd, $J 15.4$ and 5.6), 3.48-3.36 (1 H, m, concealed), 3.32 (1 $\mathrm{H}, \mathrm{t}, J 3.2$, after treatment with $\mathrm{D}_{2} \mathrm{O}$ the signal appeared as: 1 $\mathrm{H}, \mathrm{d}, J 2.8), 3.28(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.14(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.54(1 \mathrm{H}$, ddd, $J 15.8,9.4$ and $4.3,16-\mathrm{H}), 1.80(1 \mathrm{H}$, ddd, $J 14.8,7.1$ and $3.2,16-\mathrm{H}), 1.30(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.50\left(1 \mathrm{H}\right.$, br $\mathrm{m}, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}$ exchange), $0.79(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{C}}\left(67.5 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right.$, referenced to $128.4 \mathrm{ppm}) 139.9(0), 129.4$ (1), 128.8 (1), 127.3 (1), 101.7 (1), 79.8 (1), 79.5 (1), 77.8 (1), 75.2 (1), 74.5 (2), 71.0 (2), 60.3 (1), 59.3 (3), 57.7 (3), 36.4 (0), 29.8 (2), 28.2 (3), 23.2 (3); $m / z(\mathrm{CI})$ $384\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+\cdot}, 100 \%\right], 367\left[(\mathrm{M}+\mathrm{H})^{+}, 84\right]$ (Found: C, $65.47 ; \mathrm{H}, 8.17 . \mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{6}$ requires $\mathrm{C}, 65.55 ; \mathrm{H}, 8.25 \%$).

($1 R, 6 R, 8 R, 10 S)$-10-Methoxy-9,9-dimethyl-8-[(2S)-2,3-

 dimethoxypropyl]-3-phenyl-2,4,7-trioxabicyclo[4.4.0]decane 20 To a mixture of alcohol $19(919 \mathrm{mg}, 2.51 \mathrm{mmol})$ in toluene (9 cm^{3}) and $50 \% \mathrm{NaOH}\left(4.5 \mathrm{~cm}^{3}\right)$, was added tetrabutylammonium hydrogen sulfate ($187 \mathrm{mg}, 0.55 \mathrm{mmol}$) and dimethyl sulfate $\left(1.3 \mathrm{~cm}^{3}, 13.7 \mathrm{mmol}\right)$. The reaction mixture was vigorously stirred at room temp. for 2 h . Then $\mathrm{MeOH}\left(1.3 \mathrm{~cm}^{3}\right)$ was added dropwise. The reaction mixture was stirred for 15 \min, diluted with water $\left(25 \mathrm{~cm}^{3}\right)$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(3 \times 50 \mathrm{~cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was chromatographed on $\mathrm{SiO}_{2}(30 \mathrm{~g}$, hexanes: AcOEt $20-30 \%$) to give the pure methyl ether 20 (895 $\mathrm{mg}, 2.35 \mathrm{mmol}, 94 \%$) as a white solid, $\mathrm{mp} 91-92^{\circ} \mathrm{C}$ (AcOEthexanes $) ;[\alpha]_{\mathrm{D}}+7.2\left(c 1.0\right.$ in $\left.\mathrm{CCl}_{4}\right) ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2879-$ 2823 (s), 1477 (s), 1457 (s), 1400 (s), 1310 (m), 1190 (s), 1146 (s), $1099(\mathrm{~s}), 1023(\mathrm{~s}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right.$, referenced to 7.13 ppm$)$ 7.69-7.64 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 7.21-7.07 (3 H, m, Ph, coincident with $\mathrm{C}_{6} \mathrm{D}_{6}$ reference signal), $5.31(1 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}), 4.20(1 \mathrm{H}, \mathrm{dd}, J$ 12.8 and $1.4,10-\mathrm{H}), 3.75(1 \mathrm{H}, \mathrm{dd}, J 12.2$ and $3.1,10-\mathrm{H}), 3.69(1$ $\mathrm{H}, \mathrm{t}, J 2.0,12-\mathrm{H}), 3.64(1 \mathrm{H}, \mathrm{dd}, J 10.2$ and 2.0$), 3.61(1 \mathrm{H}, \mathrm{m}$, $11-\mathrm{H}), 3.57-3.36\left(4 \mathrm{H}, \mathrm{m}, 18-\mathrm{H}_{2}, 17-\mathrm{H}, 15-\mathrm{H}\right), 3.30(3 \mathrm{H}, \mathrm{s}$, OMe), 3.14 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.01 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $2.84(1 \mathrm{H}, \mathrm{d}, J$ $2.1,13-\mathrm{H}), 2.52(1 \mathrm{H}$, ddd, $J 15.1,11.9$ and $4.6,16-\mathrm{H}), 1.82(1$ H , ddd, $J 14.7,6.9$ and $3.2,16-\mathrm{H}), 1.36(1 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 0.89(1$ $\mathrm{H}, \mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{C}}\left(67.5 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right.$, referenced to 128.4 ppm$)$ 140.0 (0), 129.3 (1), 128.7 (1), 127.3 (1), 101.8 (1), 85.6 (1), 79.7 (1), 79.4 (1), 74.8 (2), 73.8 (1), 71.1 (2), 60.6 (1), concealed signal at 60.6 (3), 59.3 (3), 57.7 (3), 36.7 (0), 29.8 (2), 28.4 (3), $22.9(3) ; m / z\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 398\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\right.$, 70%, $381\left[(\mathrm{M}+\mathrm{H})^{+}\right.$, 100] (Found: C, 66.21; H, 8.42. $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}$ requires $\mathrm{C}, 66.29 ; \mathrm{H}, 8.48 \%$).
($2 R, 3 R, 4 S, 6 R$)-2-Hydroxymethyl-4-methoxy-6-[(2S)-dimethoxypropyl]-5,5-dimethyloxan-3-ol 26

A solution of acetal $20(2.63 \mathrm{~g}, 6.91 \mathrm{mmol})$ and PTSA (130 mg , 0.74 mmol) in $\mathrm{MeOH}\left(120 \mathrm{~cm}^{3}\right)$ was heated at reflux for 6 h . The reaction mixture was cooled and treated with solid $\mathrm{NaHCO}_{3}(1.5 \mathrm{~g})$. The mixture was concentrated in vacuo to remove the methanol. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 cm^{3}), filtered through a pad of Celite, concentrated and chromatographed on $\mathrm{SiO}_{2}(32 \mathrm{~g}$, hexanes: AcOEt $50-100 \%)$ to give the diol $26(2.0 \mathrm{~g}, 99 \%)$ as a colourless oil, $[\alpha]_{\mathrm{D}}+89.4(c 1.0$ in $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 3620(\mathrm{~m}), 3462(\mathrm{br} \mathrm{s}), 2976-2824$ (s), 1469 (m), 1385 (m), 1305 (m), 1193 (m), 1101 (s), 1047 (s), $969(\mathrm{~m}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.14(1 \mathrm{H}, \mathrm{ddd}, J 9.7,6.7$ and 4.9 , 11-H), 4.00-3.87[1 H, m, on treatment with $\mathrm{D}_{2} \mathrm{O}$ resolved as: $3.94(1 \mathrm{H}, \mathrm{dd}, J 13.5$ and $9.7,12-\mathrm{H})], 4.00-3.87[1 \mathrm{H}, \mathrm{m}$, on treatment with $\mathrm{D}_{2} \mathrm{O}$ resolved as: $3.92(1 \mathrm{H}$, dd, $J 13.5$ and 9.7 , $10-\mathrm{H})], 3.76(1 \mathrm{H}$, ddd, $J 13.5,10.8$ and 4.9 , on treatment with $\mathrm{D}_{2} \mathrm{O}$ appeared as 1 H , dd, $J 13.5$ and $\left.4.9,10-\mathrm{H}\right), 3.65-3.26(4 \mathrm{H}$, m , concealed, $\left.15-\mathrm{H}, 17-\mathrm{H}, 18-\mathrm{H}_{2}\right), 3.59(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.41$ (3 $\mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.38$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 2.89 ($1 \mathrm{H}, \mathrm{d}, J 9.6,13-\mathrm{H}$), 2.38 (1 $\mathrm{H}, \mathrm{d}, J 3.3, \mathrm{D}_{2} \mathrm{O}$ exchange, OH$), 1.70(2 \mathrm{H}, \mathrm{dd}, J 6.8$ and 5.7 ,
$\left.16-\mathrm{H}_{2}\right), 0.96(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 0.88(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{C}}(67.5 \mathrm{MHz}$, CDCl_{3}) 87.1 (1), 78.0 (1), 75.4 (1), 75.0 (2), 72.7 (1), 69.6 (1), 62.3 (3), 58.9 (3), 57.6 (2), 57.0 (3), 40.8 (0), 30.6 (2), 23.2 (3), $13.6(3) ; m / z\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 310\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 55 \%\right], 293[(\mathrm{M}+$ $\left.\mathrm{H})^{+}, 100\right]$.

(2R,3R,4S,6R)-2-[(tert-Butylcarbonyloxy)methyl]-4-methoxy-6-[(2S)-dimethoxypropyl]-5,5-dimethyloxan-3-ol 27

To a stirred solution of diol $26(3.12 \mathrm{~g}, 10.67 \mathrm{mmol})$, pyridine $\left(2.7 \mathrm{~cm}^{3}, 33.4 \mathrm{mmol}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(15 \mathrm{~cm}^{3}\right)$ was added pivaloyl chloride $(\mathrm{PvCl})\left(2.7 \mathrm{~cm}^{3}, 21.9 \mathrm{mmol}\right)$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temp. for 4 h , then poured into sat. aqueous NaHCO_{3} and the layers separated. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 50 \mathrm{~cm}^{3}\right)$. The combined extracts were washed with $\mathrm{HCl}\left(2 \mathrm{~mol} \mathrm{dm}^{-3}\right)$, brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was chromatographed on $\mathrm{SiO}_{2}(75 \mathrm{~g}$, hexanes : AcOEt 5-40\%) to give the ester $27(3.86$ $\mathrm{g}, 96 \%$) as a colourless oil, $[\alpha]_{\mathrm{D}}+86.7$ (c 2.27 in CHCl_{3}); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3444(\mathrm{~s}), 1728(\mathrm{~s}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.53(1$ H , dd, $J 9.3$ and $12.5,10-\mathrm{H}), 4.23-4.35(2 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}$ and $10-\mathrm{H})$, $3.93(1 \mathrm{H}$, ddd, $J 3.5,6.6$ and $10.0,12-\mathrm{H}), 3.58(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, 3.49-3.36 ($3 \mathrm{H}, \mathrm{m}$), $3.36(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.87(1 \mathrm{H}, \mathrm{d}, J 9.9$, 13H), $2.34(1 \mathrm{H}, \mathrm{d}, J 3.5, \mathrm{OH}), 1.56-1.78\left(2 \mathrm{H}, \mathrm{m}, 16-\mathrm{H}_{2}\right), 1.23(9$ $\left.\mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 0.88$ and $0.96(3 \mathrm{H}$ each, $\mathrm{s}, 14-\mathrm{Me}) ; \delta_{\mathrm{C}}(67.5 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 178.7$ (0), 87.6 (1), 77.9 (1), 74.2 (1), 74.0 (1), 73.4 (1), 69.1 (2), 62.7 (3), 60.1 (2), 59.3 (3), 56.9 (3), 41.2 (0), 38.9 (0), 29.8 (2), 27.4 (3), 23.6 (3), 14.1 (3); m / z (MNOBA matrix) 377 $\left[(\mathrm{M}+\mathrm{H})^{+}, 42 \%\right], 273(45), 57(100)$.
(2R,3R,4S,6R)-2-[(tert-Butylcarbonyloxy)methyl]-4-methoxy-3-[(2-methoxyethoxy)methoxy]-6-[(2S)-dimethoxypropyl]-5,5dimethyloxane 28
A mixture of alcohol $27(1.03 \mathrm{~g}, 2.74 \mathrm{mmol}), \mathrm{EtN}\left(\operatorname{Pr}^{\mathrm{i}}\right)_{2}\left(1.9 \mathrm{~cm}^{3}\right.$, 10.9 mmol), tetrabutylammonium iodide ($43 \mathrm{mg}, 0.12 \mathrm{mmol}$), DMAP ($25 \mathrm{mg}, 0.2 \mathrm{mmol}$), MEM chloride $\left(0.93 \mathrm{~cm}^{3}, 8.14\right.$ mmol) and toluene $\left(17 \mathrm{~cm}^{3}\right)$ was stirred at $75-80^{\circ} \mathrm{C}$ for 15 h . The reaction mixture was cooled, diluted with $\mathrm{Et}_{2} \mathrm{O}\left(200 \mathrm{~cm}^{3}\right)$, and washed successively with water $\left(50 \mathrm{~cm}^{3}\right), \mathrm{HCl}\left(2 \mathrm{~mol} \mathrm{dm}^{-3}\right)$ and sat. aqueous NaHCO_{3}. The extract was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was chromatographed on $\mathrm{SiO}_{2}(20 \mathrm{~g}$, hexanes: AcOEt $5-40 \%$) to give the MEM ether $28(1.25 \mathrm{~g}$, 98%) as a colourless oil, $[\alpha]_{\mathrm{D}}+48.7$ (c 1.33 in CHCl_{3}); $v_{\max }($ film $) / \mathrm{cm}^{-1} 1729(\mathrm{~s}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.84(1 \mathrm{H}, \mathrm{d}, J$ $\left.6.9, \mathrm{OCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{O}\right), 4.77\left(1 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{O}\right), 4.48(1 \mathrm{H}, \mathrm{dd}$, $J 9.5$ and $12.5,10-\mathrm{H}), 4.32-4.24(2 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}$ and $10-\mathrm{H}), 3.88$ (1 H , dd, $J 6.4$ and $9.8,12-\mathrm{H}), 3.78(1 \mathrm{H}$, ddd, $J 4.1,5.0$ and $\left.10.8, \mathrm{OCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CH}_{2} \mathrm{O}\right), 3.67(1 \mathrm{H}$, ddd, $J 4.1,5.4$ and 10.6 , $\left.\mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{2} \mathrm{O}\right), 3.57-3.53\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OMe}\right), 3.50(3$ $\mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.39(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.36-3.50(3 \mathrm{H}, \mathrm{m}), 3.36(6 \mathrm{H}, \mathrm{s}$, OMe), $2.89(1 \mathrm{H}, \mathrm{d}, J 9.8,13-\mathrm{H}), 1.61-1.73(2 \mathrm{H}, \mathrm{m}, 16-\mathrm{H}), 1.23$ ($9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}$), 0.88 and 0.94 (3 H each, $\mathrm{s}, 14-\mathrm{Me}$); $\delta_{\mathrm{C}}(67.5 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 178.5$ (0), 96.1 (2), 85.7 (1), 77.9 (1), 75.1 (1), 73.8 (1), 73.5 (2), 71.9 (2), 67.4 (2), 62.0 (3), 60.6 (2), 59.3 (3), 59.1 (3), 56.9 (3), 41.2 (0), $38.8(0), 29.8(2), 27.3(3), 23.3(3), 14.2(3) ; m / z$ $\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 482\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 47 \%\right], 465\left[(\mathrm{M}+\mathrm{H})^{+}, 100\right]$ [Found: $(\mathrm{M}+\mathrm{H})^{+}, \quad 465.3079 . \quad \mathrm{C}_{23} \mathrm{H}_{45} \mathrm{O}_{9}$ requires M, 465.3064].
(2R,3R,4S,6R)-2-Hydroxymethyl-4-methoxy-3-[(2-methoxy-ethoxy)methoxy]-6-[(2S)-dimethoxypropyl]-5,5-dimethyloxane 29
To a stirred solution of ester $28(1.25 \mathrm{~g}, 2.69 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(18$ cm^{3}) was added LAH ($225 \mathrm{mg}, 5.77 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 25 min , diluted with ether $\left(25 \mathrm{~cm}^{3}\right)$, treated with sat. aqueous $\mathrm{Na}_{2} \mathrm{SO}_{4}\left(0.5 \mathrm{~cm}^{3}\right)$. After 1 h at room temp. solid $\mathrm{Na}_{2} \mathrm{SO}_{4}$ was added and the mixture filtered through Celite and concentrated. The residue was chromatographed on $\mathrm{SiO}_{2}\left(10 \mathrm{~g}, \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{Et}_{2} \mathrm{O}\right)$ to give the alcohol $29(984 \mathrm{mg}$, 96%) as a colourless oil, $[\alpha]_{\mathrm{D}}+18.5$ (c 2.08 in CHCl_{3}); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3425(\mathrm{~s}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.82(1 \mathrm{H}, \mathrm{d}, J$
6.8, $\left.\mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{O}\right), 4.75\left(1 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{O}\right), 4.15(1 \mathrm{H}$, ddd, $J 4.2,6.6$ and $10.6,11-\mathrm{H}), 3.95(1 \mathrm{H}, \mathrm{dd}, J 10.6$ and 12.3 , $10-\mathrm{H}), 3.90(1 \mathrm{H}$, dd, $J 6.8$ and $9.8,12-\mathrm{H}), 3.76(1 \mathrm{H}, \mathrm{dt}, J 4.2$ and 10.4), $3.50(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.41(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.39(3 \mathrm{H}, \mathrm{s}$, OMe), 3.37 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.3-3.7 ($7 \mathrm{H}, \mathrm{m}$), 2.87 ($1 \mathrm{H}, \mathrm{d}, J 9.8$, $13-\mathrm{H}), 1.68(2 \mathrm{H}, \mathrm{t}, J 6.1,16-\mathrm{H}), 0.87$ and 0.92 (3 H each, s, $14-$ $\mathrm{Me}) ; \delta_{\mathrm{C}}\left(67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 95.9$ (2), 85.7 (1), 78.2 (1), 75.7 (1), 75.4 (2), 74.9 (1), 72.2 (1), 71.7 (2), 67.1 (2), 59.0 (3), 58.9 (3), 57.2 (2), 57.1 (3), 41.2 (0), 30.8 (2), 22.9 (3), 13.6 (3); m / z (CI, $\left.\mathrm{NH}_{3}\right) 398\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 8 \%\right], 381\left[(\mathrm{M}+\mathrm{H})^{+}, 100\right], 305(44)$ [Found: $(\mathrm{M}+\mathrm{H})^{+}, \quad 381.2491 . \mathrm{C}_{18} \mathrm{H}_{37} \mathrm{O}_{8}$ requires M, 381.2488].
($2 R, 3 R, 4 S, 6 R$)-2-Formyl-4-methoxy-3-[(2-methoxyethoxy)-methoxy]-6-[(2S)-dimethoxypropyl]-5,5-dimethyloxane 30 Dess-Martin periodinane (502 mg) was added in one portion to a stirred solution of alcohol $29(103 \mathrm{mg}, 0.271 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(4 \mathrm{~cm}^{3}\right)$. After 1 h at room temp. the reaction mixture was treated with sat. aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\left(10 \mathrm{~cm}^{3}\right)$ and sat. aqueous $\mathrm{NaHCO}_{3}\left(10 \mathrm{~cm}^{3}\right)$. After stirring for 10 min the reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 20 \mathrm{~cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give the crude aldehyde $\mathbf{3 0}(105 \mathrm{mg})$. Chromatography on SiO_{2} (3 g , hexanes: AcOEt 20-50\%) gave the pure aldehyde 30 (96 $\mathrm{mg}, 94 \%$) as a colourless oil, $[\alpha]_{\mathrm{D}}+139\left(c 1.37\right.$ in CHCl_{3}); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1733(\mathrm{~s}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.97(1 \mathrm{H}, \mathrm{s}$, CHO), $4.88\left(1 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{OCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{O}\right), 4.82(1 \mathrm{H}, \mathrm{d}, J 6.8$, $\left.\mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{O}\right), 4.54(1 \mathrm{H}, \mathrm{d}, J 7.1,11-\mathrm{H}), 4.05(1 \mathrm{H}$, dd, $J 7.1$ and $9.8,12-\mathrm{H}), 3.81\left(1 \mathrm{H}\right.$, ddd, $J 3.7,5.2$ and $10.6, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), $3.70\left(1 \mathrm{H}, \mathrm{dd}, J 3.7\right.$ and $\left.5.2, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.69-3.58(1 \mathrm{H}, \mathrm{m})$, $3.61(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.56\left(1 \mathrm{H}\right.$, ddd, $J 1.5,3.7$ and $5.2, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), $3.50(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.46(1 \mathrm{H}, \mathrm{dd}, J 3.1$ and 9.1, 15-H), 3.44-3.25 $(1 \mathrm{H}, \mathrm{m}), 3.40(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.38(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.37(3 \mathrm{H}, \mathrm{s}$, OMe), $2.76(1 \mathrm{H}, \mathrm{d}, J 10.0,13-\mathrm{H}), 1.76-1.54\left(2 \mathrm{H}, \mathrm{m}, 16-\mathrm{H}_{2}\right)$, 0.85 and 0.88 (3 H each, $\mathrm{s}, 14-\mathrm{Me}$); $\delta_{\mathrm{C}}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 202.2$ (0), 96.7 (2), 86.7 (1), 79.1 (1), 77.8 (1), 76.8 (1), 76.4 (1), 72.8 (2), 71.6 (2), 67.4 (2), 61.8 (3), 58.9 (3), 56.7 (3), 41.3 (0), 29.6 (2), 22.7 (3), $13.6(3) ; m / z\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 396\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 50 \%\right], 379$ $\left[(M+H)^{+}, 100\right], 317(50)$. Owing to the instability of aldehyde 30, it was better to use it immediately without purification as described in the following procedure.

($2 R, 3 R, 4 S, 6 R$)-4-Methoxy-6-[(2S)-dimethoxypropyl]-5,5-dimethyl-2-\{di[(prop-2-enyl)oxy]methyl\}oxan-3-ol 31

Dess-Martin periodinane (3 g) was added in one portion to a stirred solution of alcohol $29(628 \mathrm{mg}, 1.65 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($25 \mathrm{~cm}^{3}$) at room temp. After 80 min the reaction mixture was treated with sat. aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\left(25 \mathrm{~cm}^{3}\right)$ and sat. aqueous $\mathrm{NaHCO}_{3}\left(50 \mathrm{~cm}^{3}\right)$. After stirring for 30 min the reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 20 \mathrm{~cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give the crude aldehyde 30 which was added to a mixture of allyl alcohol ($13 \mathrm{~cm}^{3}$) and PTSA ($50 \mathrm{mg}, 0.26 \mathrm{mmol}, 0.16$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(13 \mathrm{~cm}^{3}\right.$) and the mixture heated at reflux for 22 h (oil bath at $65^{\circ} \mathrm{C}$). Traces of water from a condenser were removed at 2 h intervals. The reaction mixture was stirred at room temp. overnight (TLC showed ca. 1:1 mixture of MEM ether and alcohol). Anhydrous ZnCl_{2} ($500 \mathrm{mg}, 3.65 \mathrm{mmol}$) was added and the reaction mixture was refluxed for a further 5 h . After cooling to room temp. the mixture was poured onto sat. aqueous NaHCO_{3}. The phases were separated and the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 30 \mathrm{~cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and the residue was chromatographed on $\mathrm{SiO}_{2}(50 \mathrm{~g}$, hexanes: AcOEt $10-30 \%$) to give the hydroxy acetal $31(447 \mathrm{mg}, 70 \%$) as a colourless oil, $[\alpha]_{\mathrm{D}}+46.6\left(c 1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3488(\mathrm{br} \mathrm{s})$, 3011-2826(s), 1648 (w), 1467 (m), $1424(\mathrm{~m}), 1388(\mathrm{~m}), 1366(\mathrm{~m})$, $1216(\mathrm{~m}), 1210(\mathrm{~m}), 1102(\mathrm{~s}), 1054(\mathrm{~s}), 993(\mathrm{~m}), 934(\mathrm{~m}) ; \delta_{\mathrm{H}}(270$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.93(2 \mathrm{H}, 2 \times$ overlapping dddd, $J 17.1,10.3$, 6.2 and $5.3,2 \times \mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-$), $5.33(1 \mathrm{H}, \mathrm{dq}, J 17.2$ and
1.6, $\left.\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\right), 5.31\left(1 \mathrm{H}, \mathrm{dq}, J 17.2\right.$ and $\left.1.6, H_{2} \mathrm{C}=\mathrm{CH}-\right), 5.23$ ($1 \mathrm{H}, \mathrm{dq}, J 10.3$ and $\left.1.5, H_{2} \mathrm{C}=\mathrm{CH}-\right), 5.19(1 \mathrm{H}, \mathrm{dq}, J 10.3$ and $\left.1.5, H_{2} \mathrm{C}=\mathrm{CH}-\right), 4.97(1 \mathrm{H}, \mathrm{d}, J 5.8,10-\mathrm{H}), 4.26(1 \mathrm{H}, \mathrm{ddt}, J 12.7$, 5.3 and $\left.1.5, \mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{O}\right), 4.18(2 \mathrm{H}$, apparent dq,$J 5.5$ and $\left.1.6, \mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{O}\right), 4.11(1 \mathrm{H}, \mathrm{ddt}, J 12.7,5.9$ and 1.4 , $\left.\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{O}\right), 4.03(1 \mathrm{H}, \mathrm{t}, J 5.7,11-\mathrm{H}), 3.95(1 \mathrm{H}, \mathrm{ddd}$, $J 8.2,5.9$ and $4.7,12-\mathrm{H}$, appeared as dd, $J 8.2$ and 5.9 after $\mathrm{D}_{2} \mathrm{O}$ exchange), 3.56-3.36 ($4 \mathrm{H}, \mathrm{m}$, concealed, 15-H, 17-H, 18H_{2}), $3.56(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.36(6 \mathrm{H}, \mathrm{s}, 2 \times$ overlapping OMe$)$, $2.99(1 \mathrm{H}, \mathrm{d}, J 5.0, \mathrm{OH}), 2.99(1 \mathrm{H}, \mathrm{d}, J 8.2,13-\mathrm{H}), 1.73(1 \mathrm{H}$, $\mathrm{m}, 16-\mathrm{H}), 1.65(1 \mathrm{H}, \mathrm{m}, 16-\mathrm{H}), 0.99(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 0.87(3 \mathrm{H}$, $\mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{C}}\left(67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 134.3$ (1), 133.8 (1), 118.0 (2), 116.9 (2), 100.3 (1), 87.1 (1), 78.0 (1), 76.7 (1), 73.1 (2), 72.1 (1), 69.5 (1), 68.9 (2), 66.3 (2), 61.9 (3), 59.4 (3), 56.9 (3), 40.1 (0), 29.5 (2), 24.5 (3), 15.7 (3); $m / z\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 406\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\right.$, $15 \%], 389\left[(\mathrm{M}+\mathrm{H})^{+}, 33\right], 348$ (56), 331 (100), 299 (51), 290 (50), 127 (93) [Found: $(\mathrm{M}+\mathrm{H})^{+}, 389.2521 . \mathrm{C}_{20} \mathrm{H}_{37} \mathrm{O}_{7}$ requires $M, 389.2539]$.

Formation of trioxabicyclo[4.4.0]decanes 32a,b

HCl gas was passed through a stirred mixture of hydroxy acetal $31(236 \mathrm{mg}, 0.61 \mathrm{mmol})$, paraformaldehyde ($206 \mathrm{mg}, 6.8 \mathrm{mmol}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(25 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ for 35 min . The white suspension of paraformaldehyde disappeared to give a colourless solution. Then a stream of N_{2} was passed through the mixture for 50 min . The solution was poured onto sat. aqueous NaHCO_{3} and the organic layer separated. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \times 20 \mathrm{~cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give a solid residue. The residue was treated with $\mathrm{Et}_{2} \mathrm{O}$ and filtered. The filtrate was concentrated and chromatographed on $\mathrm{SiO}_{2}(12 \mathrm{~g}$, hexanes: AcOEt $10-60 \%$) to give the acetal 35 as a mixture of $\mathrm{C}-5$ epimers ($\mathbf{3 2 a}: 32 \mathrm{~b}=1: 4,177 \mathrm{mg}, 81 \%$) and the hemiacetals 33a,b ($13.5 \mathrm{mg}, 7 \%$, a $2: 1$ mixture of $\mathrm{C}-5$ epimers). The epimeric acetals were separated on SiO_{2} (hexanes: AcOEt).
($1 R, 5 S, 6 R, 8 R, 10 S)$-10-Methoxy-8-[(2S)-2,3-dimethoxy-propyl]-9,9-dimethyl-5-[(prop-2-enyl)oxy]-2,4,7-trioxabicyclo[4.4.0]decane 32a. $[\alpha]_{\mathrm{D}}+9.5$ (c 0.8 in CHCl_{3}); $v_{\text {max }}($ film $) /$ $\mathrm{cm}^{-1} 1648$ (w), 1469 (s), 1181 (s), 1107 (s), $994(\mathrm{~s}) ; \delta_{\mathrm{H}}(270$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $5.97(1 \mathrm{H}$, dddd, $J 5.0,5.8,10.6$ and 17.2 , $\left.=\mathrm{CHCH}_{2} \mathrm{O}\right), 5.32\left(1 \mathrm{H}, \mathrm{dq}, J 1.7\right.$ and $17.4,=\mathrm{CH}_{2}$ trans $), 5.25(1$ $\mathrm{H}, \mathrm{dq}, J 1.5$ and $10.4,=\mathrm{CH}_{2}$ cis), $5.21(1 \mathrm{H}, \mathrm{d}, J 6.6$, $\left.\mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{O}\right), 4.94(1 \mathrm{H}$, br d, $J 3.5,10-\mathrm{H}), 4.62(1 \mathrm{H}, \mathrm{d}, J 6.4$, $\left.\mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{O}\right), 4.36\left(1 \mathrm{H}, \mathrm{ddt}, J 1.7,5.0\right.$ and 13.0 , $\left.=\mathrm{CHCH}_{2} \mathrm{O}\right)$, 4.15-3.90 $(2 \mathrm{H}, \mathrm{m}), 4.06(1 \mathrm{H}$, ddt, $J 1.5,6.0$ and 13.0 , $\left.=\mathrm{CHCH}_{2} \mathrm{O}\right), 3.53(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.46(1 \mathrm{H}, \mathrm{d}, J 9.9,13-\mathrm{H}), 3.38$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.37 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.35-3.55 ($4 \mathrm{H}, \mathrm{m}$), $1.50-1.80$ ($2 \mathrm{H}, \mathrm{m}, 16-\mathrm{H}$), 0.86 and 1.02 (3 H each, s, $14-\mathrm{Me}$); $\delta_{\mathrm{H}}(270 \mathrm{MHz}$, $\mathrm{C}_{6} \mathrm{D}_{6}$, referenced to 7.20 ppm$) 5.90(1 \mathrm{H}$, dddd, $J 5.0,5.8,10.4$ and 17.2, $=\mathrm{CHCH}_{2} \mathrm{O}$), $5.27\left(1 \mathrm{H}, \mathrm{dq}, J 1.7\right.$ and 17.4, $=\mathrm{CH}_{2}$ trans), $5.17\left(1 \mathrm{H}, \mathrm{d}, J 6.2, \mathrm{OCH}_{\mathrm{A}} \mathrm{CH}_{\mathrm{B}} \mathrm{O}\right), 5.10(1 \mathrm{H}, \mathrm{dq}, J 1.5$ and $10.4,=\mathrm{CH}_{2}$ cis), $4.84(1 \mathrm{H}, \mathrm{d}, J 4.6,10-\mathrm{H}), 4.50(1 \mathrm{H}, \mathrm{d}, J 6.2$, $\left.\mathrm{OCH}_{\mathrm{A}} \mathrm{CH}_{\mathrm{B}} \mathrm{O}\right), 4.20-4.32(2 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}, 11-\mathrm{H}), 4.16(1 \mathrm{H}, \mathrm{dd}$, $J 3.9$ and $7.0,15-\mathrm{H}), 4.14(1 \mathrm{H}$, ddt, $J 1.7,5.0$ and 12.9 , $\left.=\mathrm{CHCH}_{2} \mathrm{O}\right), 3.82\left(1 \mathrm{H}\right.$, ddt, $J 1.5,5.8$ and $\left.13.1,=\mathrm{CHCH}_{2} \mathrm{O}\right)$, $3.70(1 \mathrm{H}, \mathrm{m}, 17-\mathrm{H}), 3.63(1 \mathrm{H}, \mathrm{d}, J 9.9,13-\mathrm{H}), 3.56(2 \mathrm{H}, \mathrm{d}, J 4.4$, $18-\mathrm{H}_{2}$), 3.45 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.37 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.29 ($3 \mathrm{H}, \mathrm{s}$, OMe), $1.67-1.83\left(2 \mathrm{H}, \mathrm{m}, 16-\mathrm{H}_{2}\right), 0.97$ and 1.04 (3 H each, $\mathrm{s}, 14$ $\mathrm{Me}) ; \delta_{\mathrm{C}}\left(67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 133.4$ (1), 116.8 (2), 98.3 (1), 81.1 (1), 76.3 (1), 76.1 (1), 73.3 (2), 72.9 (1), 68.7 (2), 66.6 (1), 60.8 (3), 58.8 (3), 56.6 (3), 39.6 (0), 29.4 (2), 23.9 (3), 14.6 (3); $\delta_{\text {c }}(62.5$ $\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$, referenced to 128.4 ppm) 134.6 (1), 117.3 (2), 99.3 (1), 81.8 (1), 81.2 (2), 79.2 (1), 76.8 (1), 75.1 (2), 74.2 (1), 69.5 (2), 68.3 (1), 61.5 (3), 59.4 (3), 57.4 (3), 40.9 (0), 31.2 (2), 24.6 (3), $14.7(3) ; m / z\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 378\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 23 \%\right], 361[(\mathrm{M}+$ H) ${ }^{+}$, 100].

($1 R, 5 R, 6 R, 8 R, 10 S)$-10-Methoxy-8-[(2S)-2,3-dimethoxy-

 propyl]-9,9-dimethyl-5-[(prop-2-enyl)oxy]-2,4,7-trioxabicyclo[4.4.0]decane 32b. $[\alpha]_{\mathrm{D}}+86.8\left(c 1.5\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CCl}_{4}\right) /$ $\mathrm{cm}^{-1} 1648$ (w), 1459 (m), 1179 (s), 1132 (s), 1102 (s), 1042 (s),$984(\mathrm{~s}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.93(1 \mathrm{H}$, dddd, $J 5.2,6.2$, 10.4 and 17.0, $\left.=\mathrm{CHCH}_{2} \mathrm{O}\right), 5.32\left(1 \mathrm{H}, \mathrm{dq}, J 1.5\right.$ and $17.2,=\mathrm{CH}_{2}$ trans), $5.22\left(1 \mathrm{H}, \mathrm{dq}, J 1.3\right.$ and $10.4,=\mathrm{CH}_{2}$ cis $), 5.08(1 \mathrm{H}, \mathrm{d}$, $\left.J 6.0, \mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{O}\right), 4.818(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}), 4.816(1 \mathrm{H}, \mathrm{d}, J 5.6$, $\left.\mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{O}\right), 4.27\left(1 \mathrm{H}, \mathrm{ddt}, J 1.5,5.2\right.$ and $\left.13.0,=\mathrm{CHCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{O}\right)$, $4.07\left(1 \mathrm{H}, \mathrm{ddt}, J 1.2,6.4\right.$ and $\left.13.0,=\mathrm{CHCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{O}\right), 3.93(1 \mathrm{H}, \mathrm{t}, J$ $2.9,12-\mathrm{H}), 3.68(1 \mathrm{H}, \mathrm{t}, J 2.0,11-\mathrm{H}), 3.57(1 \mathrm{H}, \mathrm{dd}, J 3.1$ and $12.0,15-\mathrm{H}), 3.50\left(1 \mathrm{H}, \mathrm{dd}, J 3.7\right.$ and $\left.9.6,18-\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right), 3.46(1 \mathrm{H}$, dd, $J 2.1$ and $9.6,18-H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$), $3.39(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.38(3 \mathrm{H}, \mathrm{s}$, OMe), $3.37(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.35-3.40(1 \mathrm{H}, \mathrm{m}), 2.89(1 \mathrm{H}, \mathrm{d}, J$ $3.3,13-\mathrm{H}), 2.27\left(1 \mathrm{H}\right.$, ddd, $J 4.2,12.0$ and $\left.15.1,16-\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right), 1.60$ $\left(1 \mathrm{H}\right.$, ddd, $J 3.3,7.9$ and $\left.15.1,16-H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 0.91$ and $1.21(3 \mathrm{H}$ each, $\mathrm{s}, 14-\mathrm{Me}) ; \delta_{\mathrm{C}}\left(67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 133.8$ (1), 117.7 (2), 96.7 (1), 85.2 (2), 83.7 (1), 78.5 (1), 78.4 (1), 73.5 (2), 70.2 (1), 68.2 (2), 63.4 (1), 59.5 (3), 59.2 (3), 57.2 (3), 37.2 (0), 28.5 (2), 27.2 (3), 21.4 (3); $m / z\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 378\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 7 \%\right], 361[(\mathrm{M}+$ $\mathrm{H})^{+}, 100$] [Found: $(\mathrm{M}+\mathrm{H})^{+}, 361.2228 . \mathrm{C}_{18} \mathrm{H}_{33} \mathrm{O}_{7}$ requires $M, 361.2226]$.

($1 R, 5 R S, 6 R, 8 R, 10 S)$-10-Methoxy-8-[(2S)-2,3-dimethoxy-

 propyl]-9,9-dimethyl-2,4,7-trioxabicyclo[4.4.0]decan-5-ol 33a,b A solution of allyl acetals 32a,b ($1: 4$ mixture of epimers, 353 $\mathrm{mg}, 0.98 \mathrm{mmol}$), 1,4-diazabicyclo[2.2.2]octane (DABCO) (24 $\mathrm{mg}, 0.21 \mathrm{mmol}$) in aqueous $\mathrm{EtOH}\left(\mathrm{EtOH}: \mathrm{H}_{2} \mathrm{O}=9: 1,11 \mathrm{~cm}^{3}\right)$ was stirred under argon. Wilkinson's catalyst ($63 \mathrm{mg}, 0.068$ $\mathrm{mmol}, 97 \%$ from Fluka) was added and the red suspension heated at reflux for 1.75 h . After cooling to room temp. the yellow suspension was filtered through a Celite pad with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(c a .120 \mathrm{~cm}^{3}\right)$. The filtrate was concentrated to give a yellow oil which was chromatographed on $\mathrm{SiO}_{2}(5 \mathrm{~g}$, hexanes: AcOEt: $\mathrm{Et}_{3} \mathrm{~N} 80: 20: 0.1$) to give a mixture of prop-1enyl acetals and propyl acetals (330 mg). This mixture was treated with THF $\left(10 \mathrm{~cm}^{3}\right)$ and a solution of $\mathrm{Hg}(\mathrm{OAc})_{2}(412$ mg) in water ($7 \mathrm{~cm}^{3}$) and stirred at room temp. After 5 min the solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 30 \mathrm{~cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated and the residue chromatographed on $\mathrm{SiO}_{2}(13 \mathrm{~g}$, hexanes: AcOEt $20-60 \%$) to give a $2: 1$ mixture of $\mathrm{C}-5$ epimers of the hemiacetals 33a,b as a colourless oil ($222 \mathrm{mg}, 71 \%$) and a $4: 1$ mixture of $\mathrm{C}-5$ epimers of the propyl acetals ($66 \mathrm{mg}, 18 \%$). The following data were recorded on a mixture of the hemiacetals.$\nu_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right)$ 3596-3409 (br m), 3025-2826 (s), 1478 (s), 1463 (s), 1423 (m), 1396 (m), 1367 (m), 1232 (m), 1198 (m), 1179 (m), 1129 (s), 1101 (s), 1031 (s), $979(\mathrm{~m}), 960(\mathrm{~m}), 909(\mathrm{~m})$.

In the ${ }^{1} \mathrm{H}$ NMR spectrum of the diastereoisomeric mixture (3:1 ratio at $\mathrm{C}-10$) those signals readily ascribed to the minor component by their relative integration are listed separately. Overlapping and concealed signals are included within the data listed for the major isomer. $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, major isomer) $5.20(1 \mathrm{H}, \mathrm{t}, J 3.8$, partially overlapping, $10-\mathrm{H}), 5.17(1 \mathrm{H}, \mathrm{d}, J$ $\left.6.7, \mathrm{OCH}_{2} \mathrm{O}\right), 4.89\left(1 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{OCH}_{2} \mathrm{O}\right), 4.03(1 \mathrm{H}, \mathrm{dd}, J 5.4$ and 3.2), $3.70(1 \mathrm{H}, \mathrm{t}, J 3.6), 3.44(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.39$ (3 $\mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.38 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.62-3.36 (4 H , overlapping m), $3.02(1 \mathrm{H}, \mathrm{d}, J 5.1), 2.34-2.09(1 \mathrm{H}, \mathrm{m}, 16-\mathrm{H}), 1.71-1.56(1 \mathrm{H}, \mathrm{m}$, $16-\mathrm{H}), 1.17(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 0.92(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) . \delta_{\mathrm{H}}$ (minor isomer) $5.12\left(1 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{OCH}_{2} \mathrm{O}\right), 4.88(1 \mathrm{H}, \mathrm{dd}, J 11.3$ and 2.1 , partially overlapping, $10-\mathrm{H}), 4.74\left(1 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{OCH}_{2} \mathrm{O}\right)$, $4.23\left(1 \mathrm{H}, \mathrm{d}, J 11.3, \mathrm{D}_{2} \mathrm{O}\right.$ exchange, OH$), 3.79(1 \mathrm{H}, \mathrm{t}, J 2.2)$, $3.74(1 \mathrm{H}, \mathrm{dd}, J 2.2$ and 3.0$)$, $3.41(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.39(3 \mathrm{H}, \mathrm{s}$, OMe), $2.98(1 \mathrm{H}, \mathrm{d}, J 3.0,13-\mathrm{H}), 1.20(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 0.95(3 \mathrm{H}$, s, Me).

When the ${ }^{13} \mathrm{C}$ NMR spectrum of the diastereoisomeric mixture ($3: 1$ at $C-10$) of $33 \mathrm{a}, \mathrm{b}$ was accumulated over 10 h , we observed interconversion of the two isomers to give a mixture (1:1.4 ratio at C-10) favouring the previously minor component. Assignment of the signals to individual isomers in the resulting spectrum was unclear and therefore the visible signals in the ${ }^{13} \mathrm{C}$ NMR spectrum are listed together, $\delta_{\mathrm{C}}(67.5$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 94.1 (1), 92.2 (1), 89.9 (2), 85.3 (2), 83.7 (1), 82.9 (1), 79.2 (1), 78.5 (1), 78.4 (1), 73.8 (2), 73.3 (2), 73.0 (1), 71.0 (1),
62.7 (1), 60.2 (3), 59.7 (3), 59.4 (3), 57.3 (3), 37.4 (0), 29.1 (2), 28.8 (2), 27.4 (3), 26.4 (3), 21.9 (3), 20.0 (3). Two CH signals and a quaternary carbon were not discernible in the spectrum. m / z $\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 321\left[(\mathrm{M}+\mathrm{H})^{+}, 91 \%\right], 303(25), 271$ (54), 217 (18), 187 (41).

Formation of azides 34a,b

A solution of hemiacetal 33a,b ($94 \mathrm{mg}, 0.29 \mathrm{mmol}$) and DMAP ($6 \mathrm{mg}, 0.05 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stirred at $-70^{\circ} \mathrm{C}$ under nitrogen. $\mathrm{Et}_{3} \mathrm{~N}\left(0.125 \mathrm{~cm}^{3}, 0.9 \mathrm{mmol}\right)$ and $\mathrm{MsCl}\left(1.3 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(0.5 \mathrm{~cm}^{3}\right)$ were added. The reaction mixture was allowed to warm to $-10^{\circ} \mathrm{C}$ over 1 h and cooled to $-70^{\circ} \mathrm{C}$. Then TMSN $_{3}\left(0.33 \mathrm{~cm}^{3}, 2.5 \mathrm{mmol}\right)$ and a solution of TASF $(530 \mathrm{mg}, 1.9 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(6 \mathrm{~cm}^{3}\right)$ were added. The reaction mixture was allowed to warm to $0^{\circ} \mathrm{C}$ over 8.5 h and then poured into sat. aqueous NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(3 \times 20 \mathrm{~cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was chromatographed on SiO_{2} (2 g , hexanes: AcOEt $5-30 \%$) to give a mixture of the azides $\mathbf{3 4 a}, \mathbf{b}(\mathbf{a}: \mathbf{b}=1: 1.2,89 \mathrm{mg}, 88 \%$) as a colourless oil. For analysis both epimers of the azide were separated on SiO_{2} (hexanes:AcOEt).
($1 R, 5 S, 6 R, 8 R, 10 S)$-5-Azido-10- methoxy-8-[(2S)-2,3-dimeth-oxypropyl]-9,9-dimethyl-2,4,7-trioxabicyclo[4.4.0]decane
34a. $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 2114 (s); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.28(1 \mathrm{H}$, $\mathrm{d}, J 2.9,10-\mathrm{H})$, $5.11\left(1 \mathrm{H}, \mathrm{d}, J 6.4, \mathrm{OCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{O}\right), 4.47(1 \mathrm{H}, \mathrm{d}$, $\left.J 6.2, \mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{O}\right), 3.89(1 \mathrm{H}, \mathrm{dd}, J 2.8$ and $3.8,12-\mathrm{H}), 3.57$ $(1 \mathrm{H}, \mathrm{t}, J 2.7,11-\mathrm{H}), 3.57(1 \mathrm{H}, \mathrm{dd}, J 3.1$ and $12.4,15-\mathrm{H}), 3.50$ $\left(1 \mathrm{H}, \mathrm{dd}, J 4.0\right.$ and $\left.10.2,18-\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right), 3.46(1 \mathrm{H}, \mathrm{dd}, J 4.4$ and $10.2,18-H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$), 3.41 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $3.40-3.35(1 \mathrm{H}, \mathrm{m}, 17-\mathrm{H}$), $3.39(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, 3.38 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $2.96(1 \mathrm{H}, \mathrm{d}, J 4.1$, $13-\mathrm{H}), 2.17\left(1 \mathrm{H}\right.$, ddd, $J 4.2,11.8$ and $\left.14.7,16-\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right), 1.63$ $\left(1 \mathrm{H}\right.$, ddd, $J 3.1,7.5$ and $\left.14.9,16-\mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 0.91$ and $1.18(3 \mathrm{H}$, each, s, $14-\mathrm{Me}) ; \delta_{\mathrm{c}}\left(67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 87.4$ (1), 86.7 (2), 83.2 (1), 78.7 (1), 78.6 (1), 73.6 (2), 70.3 (1), 63.7 (1), 59.9 (3), 59.4 (3), 57.3 (3), 37.6 (0), 28.9 (2), 26.8 (3), 20.6 (3); $m / z\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 363$ $\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 33 \%\right], 346\left[(\mathrm{M}+\mathrm{H})^{+}, 100\right], 303(16)$.
($1 R, 5 R, 6 R, 8 R, 10 S)$-5-Azido-10-methoxy-8-[(2S)-2,3-dimeth-oxypropyl]-9,9-dimethyl-2,4,7-trioxabicyclo[4.4.0]decane 35b. $\mathrm{Mp} 67-67.5^{\circ} \mathrm{C}$ (pentane); $[\alpha]_{\mathrm{D}}-51.5$ (c 0.635 in CHCl_{3}); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2119(\mathrm{~s}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.21(1 \mathrm{H}, \mathrm{d}, J$ $\left.6.6, \mathrm{OCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{O}\right), 4.78\left(1 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{O}\right), 4.63(1 \mathrm{H}$, $\mathrm{d}, J 2.3,10-\mathrm{H}), 3.86(1 \mathrm{H}, \mathrm{t}, J 2.1,11-\mathrm{H}), 3.70(1 \mathrm{H}, \mathrm{dd}, J 1.9$ and $3.5,12-\mathrm{H}), 3.69(1 \mathrm{H}, \mathrm{dd}, J 3.1$ and $12.6,15-\mathrm{H}), 3.64-3.45(3 \mathrm{H}$, $\mathrm{m}, 17-\mathrm{H}, 18-\mathrm{H}_{2}$), 3.41 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $3.40(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.39 (3 $\mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.99(1 \mathrm{H}, \mathrm{d}, J 3.5,13-\mathrm{H}), 2.27$ (1 H , ddd, $J 3.9,12.2$ and $\left.14.9,16-\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right), 1.66(1 \mathrm{H}$, ddd, $J 3.1,9.3$ and $14.7,16-$ $H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$), 0.93 and 1.19 (3 H , each, s, $14-\mathrm{Me}$); $\delta_{\mathrm{C}}(67.5 \mathrm{MHz}$, CDCl_{3}) 90.9 (2), 87.3 (1), 83.6 (1), 78.4 (1), 78.0 (1), 73.3 (1), 72.5 (2), 63.9 (1), 59.8 (3), 59.4 (3), 57.1 (3), 37.1 (0), 28.4 (2), 27.2 (3), 21.2 (3); $m / z\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 363\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 17 \%\right]$, $346\left[(\mathrm{M}+\mathrm{H})^{+}, 100\right], 303(32)$ [Found: $(\mathrm{M}+\mathrm{H})^{+}, 346.1969$. $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{6}$ requires $\left.M, 346.1978\right]$.

Formation of oxalamides 35a,b

A solution of $1: 2$ mixture of C-5 diastereoisomeric azides 34a,b ($45 \mathrm{mg}, 0.13 \mathrm{mmol}$) in THF ($5.5 \mathrm{~cm}^{3}$) was stirred under argon at room temp. 5% Pd on C (97 mg) was added and the argon atmosphere was replaced by hydrogen. The reaction mixture was stirred for 15 min , cooled to $-20^{\circ} \mathrm{C}$ and hydrogen was replaced by argon. A solution of DMAP ($54 \mathrm{mg}, 0.44 \mathrm{mmol}, 3.4$ equiv.) in THF ($1 \mathrm{~cm}^{3}$) and methyl oxalyl chloride ($40 \mu 1,0.43$ $\mathrm{mmol}, 3.3$ equiv.) were added. The reaction mixture was stirred for 15 min at $-20^{\circ} \mathrm{C}$, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(30 \mathrm{~cm}^{3}\right)$, and filtered through a pad of Celite. The filtrate was washed with water and sat. aqueous NaHCO_{3}, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue ($1: 2$ mixture of $\mathrm{C}-5$ diastereoisomers 35 a and 35b) was chromatographed on $\mathrm{SiO}_{2}(5.5 \mathrm{~g}$, hexanes: AcOEt $30-100 \%$) to give the amides $\mathbf{3 5 a}, \mathrm{b}$ (41 mg ,
77%) as a colourless oil. The isomers 35a [$R_{\mathrm{f}} 0.29$ $\left.\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}=39: 1\right)\right]$ and $\mathbf{3 5 b}\left[R_{\mathrm{f}} 0.49\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}=\right.\right.$ 39:1)] were separated by chromatography on SiO_{2} (hexanes:AcOEt).
($1 R, 5 S, 6 R, 8 R, 10 S$)-10-Methoxy-5-(methoxydioxoethan-amido)-8-[(2S)-2,3-dimethoxypropyl]-9,9-dimethyl-2,4,7-trioxabicyclo[4.4.0]decane 35a. Mp 99.5-100 ${ }^{\circ} \mathrm{C}$ (ether:hexane); $[\alpha]_{\mathrm{D}}+88.2\left(c 0.73\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 3409(\mathrm{~m}), 1727$ (s), $1520(\mathrm{~m}), 1110(\mathrm{~s}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.58(1 \mathrm{H}$, br d, $J 9.1$, NH), $5.71(1 \mathrm{H}, \mathrm{t}, J 9.8,10-\mathrm{H}), 5.17(1 \mathrm{H}, \mathrm{d}, J$ $\left.7.0, \mathrm{OCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{O}\right), 4.80\left(1 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{O}\right), 4.25(1 \mathrm{H}$, dd, $J 6.8,10.4,12-\mathrm{H}$), $3.94\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.94(1 \mathrm{H}, \mathrm{dd}, J 6.8$ and $9.8,11-\mathrm{H}), 3.58(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.46(1 \mathrm{H}, \mathrm{d}, J 10.4,13-\mathrm{H})$, 3.40-3.20(4 H, m), 3.31 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $3.30(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 1.56-$ $1.75\left(2 \mathrm{H}, \mathrm{m}, 16-\mathrm{H}_{2}\right), 0.89$ and 0.98 (3 H each, s, $14-\mathrm{Me}$); $\delta_{\mathrm{C}}(67.5$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 160.4 (0), 156.8 (0), 86.8 (2), 79.6 (1), 78.0 (1), 76.0 (1), 74.9 (1), 74.2 (1), 74.0 (2), 70.4 (1), 62.0 (1), 59.3 (3), 57.1 (3), 54.0 (3), 41.9 (0), 30.0 (2), 23.3 (3), 13.5 (3); m/z (CI, $\left.\mathrm{NH}_{3}\right) 423\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 67 \%\right], 406\left[(\mathrm{M}+\mathrm{H})^{+}, 100\right]$ [Found: $(\mathrm{M}+\mathrm{H})^{+}, 406.2062 . \mathrm{C}_{18} \mathrm{H}_{32} \mathrm{NO}_{9}$ requires $\left.M, 406.2077\right]$.
($1 R, 5 R, 6 R, 8 R, 10 S)$-10-Methoxy-5-(methoxydioxoethan-amido)-8-[(2S)-2,3-dimethoxypropyl]-9,9-dimethyl-2,4,7-trioxabicyclo[4.4.0]decane 35b. $[\alpha]_{\mathrm{D}}+19.7$ (c 0.745 in CHCl_{3}); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3417$ (m), 1768 (m), 1724 (s), 1516 (s), 1289 (s), 1195 (s), $1110(\mathrm{~s}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.19(1 \mathrm{H}$, br d, $J 9.5, \mathrm{NH}), 5.44(1 \mathrm{H}, \mathrm{dd}, J 1.7$ and $9.3,10-\mathrm{H}$), $5.11(1 \mathrm{H}, \mathrm{d}$, $\left.J 6.8, \mathrm{OCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{O}\right), 4.84\left(1 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{O}\right), 3.90(3$ $\mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}$), 3.75 ($2 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}, 11-\mathrm{H}$), 3.69 (1 H , dd, J 3.1 and $12.2,15-\mathrm{H}), 3.55\left(1 \mathrm{H}, \mathrm{dd}, J 3.1\right.$ and $\left.10.4,18-\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right), 3.50(1$ $\mathrm{H}, \mathrm{dd}, J 4.4$ and $\left.10.4,18-H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.42-3.25(1 \mathrm{H}, \mathrm{m}), 3.39(3 \mathrm{H}$, s , OMe), 3.385 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.33 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $2.95(1 \mathrm{H}, \mathrm{d}, J$ $1.7,13-\mathrm{H}), 2.32\left(1 \mathrm{H}\right.$, ddd, $J 4.6,12.2$ and $\left.14.9,16-\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right), 1.68$ $\left(1 \mathrm{H}\right.$, ddd, $J 3.1,8.1$ and $\left.14.9,16-H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 0.95$ and $1.23(3 \mathrm{H}$ each, s, $14-\mathrm{Me}) ; \delta_{\mathrm{C}}\left(67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 164.4$ (0), $156.0(0), 91.8$ (2), 83.9 (1), 79.4 (1), 78.5 (1), 77.5 (1), 72.9 (1), 72.8 (2), 61.5 (1), 59.5 (3), 59.4 (3), 57.1 (3), 36.8 (0), 28.5 (2), 27.6 (3), 22.4 (3); $m / z\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 423\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 77 \%\right], 406\left[(\mathrm{M}+\mathrm{H})^{+}\right.$, 100] [Found: $(\mathrm{M}+\mathrm{H})^{+}, 406.2070 . \mathrm{C}_{18} \mathrm{H}_{32} \mathrm{NO}_{9}$ requires M, 406.2077].

Coupling product 37

A flame-dried $10 \mathrm{~cm}^{3}$ tube was charged with stannane 36 (34 $\mathrm{mg}, 0.0766 \mathrm{mmol}$) and THF ($0.4 \mathrm{~cm}^{3}$). BuLi ($50 \mu 1,1.52 \mathrm{~mol}$ dm^{-3} in hexane, 0.076 mmol) was added at $-80^{\circ} \mathrm{C}$ under argon. The solution was stirred for 15 min at $-80^{\circ} \mathrm{C}$. Then TMEDA ($15 \mu \mathrm{l}$) was added and after 10 min a cold $\left(-80^{\circ} \mathrm{C}\right)$ solution of ester $35 \mathrm{a}(9.5 \mathrm{mg})$ in THF ($2 \times 0.25 \mathrm{~cm}^{3}$) was added via cannula. The reaction mixture was stirred at $-80^{\circ} \mathrm{C}$ for 30 min, treated with sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}\left(1 \mathrm{~cm}^{3}\right)$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 10 \mathrm{~cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by chromatography on $\mathrm{SiO}_{2}(0.83 \mathrm{~g}$, hexanes: AcOEt $5-40 \%$) to give the adduct $37\left[9.8 \mathrm{mg}, 64 \%, R_{\mathrm{f}} 0.34\right.$ (benzene: $\mathrm{AcOEt}=$ 7:3)] as a pale yellow oil, $[\alpha]_{\mathrm{D}}-6.4$ (c 0.55 in CHCl_{3}); $v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 3400(\mathrm{~m}), 1703(\mathrm{~m}), 1673(\mathrm{~s}), 1613(\mathrm{w}), 1510$ (m), $1109(\mathrm{~s}), 1027(\mathrm{~s}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.58(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J$ 9.3, NH), 7.55-7.48 ($2 \mathrm{H}, \mathrm{m}$) , 7.32-7.26 ($3 \mathrm{H}, \mathrm{m}$), $7.16(1 \mathrm{H}, \mathrm{dd}$, $J 1.6$ and $2.1,5-\mathrm{H}), 5.69(1 \mathrm{H}, \mathrm{t}, J 9.5,10-\mathrm{H}), 5.17(1 \mathrm{H}, \mathrm{d}, J 7.0$, $\left.\mathrm{OCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{O}\right), 4.89\left(1 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{O}\right), 4.24(1 \mathrm{H}, \mathrm{dd}, J$ 6.8 and $10.4,12-\mathrm{H}), 4.10(1 \mathrm{H}, \mathrm{dq}, J 1.5$ and $6.6,2-\mathrm{H}), 3.95(1 \mathrm{H}$, dd, $J 6.6$ and $9.9,11-\mathrm{H}), 3.58(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.45(1 \mathrm{H}, \mathrm{d}, J 10.4$, 13-H), 3.40-3.20 ($4 \mathrm{H}, \mathrm{m}$), 3.284 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.279 ($3 \mathrm{H}, \mathrm{s}$, OMe), 3.02-2.90 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{SePh}$), $2.86(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$), 2.03 (1 $\mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 1.8-1.5\left(2 \mathrm{H}, \mathrm{m}, 16-\mathrm{H}_{2}\right), 1.39(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.6,2-\mathrm{Me})$, $1.00\left(3 \mathrm{H}, \mathrm{s}, 14-\mathrm{Me}_{\mathrm{eq}}\right), 0.89\left(3 \mathrm{H}, \mathrm{s}, 14-\mathrm{Me}_{\mathrm{ax}}\right), 0.82(3 \mathrm{H}, \mathrm{d}, J 7.0$, $3-\mathrm{Me}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right.$ referenced to 7.20 ppm$) 7.54(1 \mathrm{H}, \mathrm{br}$ $\mathrm{d}, J 9.1, \mathrm{NH}), 7.50-7.42(2 \mathrm{H}, \mathrm{m}), 7.27(1 \mathrm{H}, \mathrm{dd}, J 1.7$ and $2.3,5-$ H), $7.10-7.00(3 \mathrm{H}, \mathrm{m}), 5.84(1 \mathrm{H}, \mathrm{t}, J 9.7,10-\mathrm{H}), 4.73(1 \mathrm{H}, \mathrm{d}, J$ $\left.7.0, \mathrm{OCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{O}\right), 4.65\left(1 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{O}\right), 4.27(1 \mathrm{H}$, dd, $J 7.0$ and $10.4,12-\mathrm{H}), 3.60-3.45(4 \mathrm{H}, \mathrm{m}), 3.35-3.40(1 \mathrm{H}$,
m), 3.35 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.32-3.26(1 H, m), 3.30 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.28 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $3.04(1 \mathrm{H}, \mathrm{d}, J 10.4,13-\mathrm{H}), 2.78(1 \mathrm{H}, \mathrm{dd}, J$ 7.9 and $\left.11.8, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{SePh}\right), 2.73(1 \mathrm{H}, \mathrm{dd}, J 8.7$ and 11.8 , $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{SePh}\right), 2.60(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 1.8-1.5(2 \mathrm{H}, \mathrm{m}), 1.35(1 \mathrm{H}$, $\mathrm{m}), 1.06(3 \mathrm{H}, \mathrm{d}, J 6.4,2-\mathrm{Me}), 0.92\left(3 \mathrm{H}, \mathrm{s}, 14-\mathrm{Me}_{\mathrm{eq}}\right), 0.85(3 \mathrm{H}$, $\left.\mathrm{s}, 14-\mathrm{Me}_{\mathrm{ax}}\right), 0.67(3 \mathrm{H}, \mathrm{d}, J 7.0,3-\mathrm{Me}) ; \delta_{\mathrm{c}}\left(67.5 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right.$ referenced to 128.4 ppm) 181.0 (0), 162.0 (0), 149.0 (0), 133.7 (1), 130.6 (0), 129.8 (1), 127.7 (1), 123.9 (1), 86.7 (2), 79.6 (1), 78.8 (1), 76.8 (1), 75.8 (1), 75.4 (1), 75.1 (2), 74.2 (1), 70.8 (1), 61.7 (3), 59.5 (3), 57.3 (3), 42.0 (0), 39.6 (1), 33.7 (1), 31.1 (2), 30.0 (2), 23.3 (3), 18.4 (3), 13.7 (3), 6.1 (3); m/z (CI, NH_{3}) $673\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 23 \%\right], 656\left[(\mathrm{M}+\mathrm{H})^{+}, 36\right], 515[(\mathrm{M}+$ $\left.\left.\mathrm{NH}_{4}-\mathrm{PhSeH}\right)^{+}, 42\right], 498\left[(\mathrm{M}+\mathrm{H}-\mathrm{PhSeH})^{+}, 100\right]$ (EI, Found: $\mathrm{M}^{+\ominus}, 655.2223 . \mathrm{C}_{31} \mathrm{H}_{45} \mathrm{NO}_{9}$ Se requires $M, 655.2260$).

Benzoates 39a,b

L-Selectride ${ }^{\text {® }}$ ($50 \mu 1,0.05 \mathrm{mmol}, 1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ in THF) was added to a stirred solution of the ketone 37 ($16 \mathrm{mg}, 0.0245$ $\mathrm{mmol})$ in THF $\left(0.5 \mathrm{~cm}^{3}\right)$ at $-95^{\circ} \mathrm{C}$. The reaction mixture was stirred for 15 min at $-95^{\circ} \mathrm{C}$ whereupon brine was added and the mixture extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 10 \mathrm{~cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residual crude alcohols $\mathbf{3 8 a}, \mathrm{b}$ (22 mg , ca. 2.5:1 mixture by NMR of the crude product) were treated with camphorsulfonic acid (CSA) (1.8 mg) in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1 \mathrm{~cm}^{3}\right)$ and MeOH $\left(0.1 \mathrm{~cm}^{3}\right)$. The reaction mixture was stirred at room temp. for $1.75 \mathrm{~h} . \mathrm{K}_{2} \mathrm{CO}_{3}(10 \mathrm{mg})$ was added and after 30 min the reaction mixture was poured into sat. aqueous NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 10 \mathrm{~cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue (20 mg) was treated with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1 \mathrm{~cm}^{3}\right)$, DMAP ($6 \mathrm{mg}, 0.05 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(40 \mu \mathrm{l}$, $0.29 \mathrm{mmol})$ and finally a solution of benzoyl chloride (BzCl) ($1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(73 \mu \mathrm{l}, 0.073 \mathrm{mmol})$. After 9 h stirring at room temp. $\mathrm{MeOH}\left(0.1 \mathrm{~cm}^{3}\right)$ was added and the reaction mixture was stirred for 10 min and then poured into brine and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 10 \mathrm{~cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by chromatography on $\mathrm{SiO}_{2}(1.5 \mathrm{~g}$, hexanes: AcOEt $5-40 \%$) to give a mixture of four diastereoisomers of the benzoate 39a-d as a colourless oil ($14.7 \mathrm{mg}, 76 \%$). The four diastereoisomers had the following R_{f} values in (hexanes : $\mathrm{Et}_{2} \mathrm{O}=1: 2$): 39d (0.38), 39a (0.31), 39b (0.26), 39c (0.20). The relative ratio of the four diastereoisomers could be easily distinguished by ${ }^{1} \mathrm{H}$ NMR analysis $\left(\mathrm{CDCl}_{3}\right)$ of the sharp singlets arising from the $7-\mathrm{H}: 39 \mathrm{a}(\delta 5.90,65 \%$), 39b ($\delta 5.44$, 28%), 39c ($\delta 5.64,5 \%$), 39d ($\delta 5.51,2 \%$). The diastereoisomers were separated by preparative TLC (Merck, silica gel $60 \mathrm{~F}_{254}$, $20 \times 20 \mathrm{~cm}, 0.25 \mathrm{~mm}$ thick, hexanes: $\mathrm{Et}_{2} \mathrm{O}=1: 2$) and data collected for 39a and 39b. Insufficient quantities of isomers 39c and 39 d precluded their full characterisation.

Diastereoisomer 39a ($R_{\mathrm{f}} 0.31$), $[\alpha]_{\mathrm{D}}+87.2\left(c 0.43\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; $v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 3360(\mathrm{~m}), 1736(\mathrm{~s}), 1708(\mathrm{~s}), 1603(\mathrm{w}), 1518(\mathrm{~m})$, 1263 (s), 1110 (s), $1038(\mathrm{~s}) ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right.$ referenced to $7.16 \mathrm{ppm}) 8.29(2 \mathrm{H}, \mathrm{dd}, J 1.4$ and 8.1$), 7.47(2 \mathrm{H}, \mathrm{dd}, J 1.5$ and $8.1), 7.42(1 \mathrm{H}$, br d, $J 9.7, \mathrm{NH}), 7.10-6.90(6 \mathrm{H}, \mathrm{m}), 5.97(1 \mathrm{H}, \mathrm{s}$, $7-\mathrm{H}), 5.93(1 \mathrm{H}, \mathrm{t}, J 9.7,10-\mathrm{H}), 4.59\left(1 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{OCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{O}\right)$, $4.58\left(1 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{O}\right), 4.29(1 \mathrm{H}, \mathrm{dd}, J 6.7$ and 10.3 , $12-\mathrm{H}), 3.78(1 \mathrm{H}, \mathrm{dd}, J 6.7$ and $9.7,11-\mathrm{H}), 3.65-3.53(4 \mathrm{H}, \mathrm{m})$, $3.43(1 \mathrm{H}, \mathrm{dd}, J 2.4$ and $9.5,15-\mathrm{H}), 3.39(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.31(3 \mathrm{H}$, s , OMe), 3.26 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.05 ($1 \mathrm{H}, \mathrm{d}, J 10.3,13-\mathrm{H}$), 2.93 (1 $\mathrm{H}, \mathrm{dd}, J 11.9$ and 12.8, $\left.\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{SePh}\right), 2.92$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 2.90 (1 H , dd, $J 7.0$ and 11.9, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{SePh}\right), 2.44(1 \mathrm{H}, \mathrm{m}$ with 10 lines, $4-\mathrm{H}), 2.30\left(1 \mathrm{H}, \mathrm{dd}, J 3.3\right.$ and $\left.13.3,5-\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right), 1.84(1 \mathrm{H}, \mathrm{t}, J 12.9$, $\left.5-H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.84\left(1 \mathrm{H}\right.$, ddd, $J 2.7,8.8$ and $\left.14.5,16-\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right), 1.73(1$ H , ddd, $J 4.4,9.5$ and $\left.14.3,16-H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.58(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 0.89$ ($3 \mathrm{H}, \mathrm{s}, 14-\mathrm{Me}_{\mathrm{eq}}$), $0.877(3 \mathrm{H}, \mathrm{d}, J 6.8,2-\mathrm{Me}), 0.868(3 \mathrm{H}, \mathrm{s}, 14-$ $\mathrm{Me}_{\mathrm{ax}}$), $0.868(3 \mathrm{H}, \mathrm{d}, J 7.1,3-\mathrm{Me}) ; \delta_{\mathrm{c}}\left(90 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right.$ referenced to 128.4 ppm$) 167.3(0), 165.7(0), 133.6(1), 133.3(1), 131.5(0)$, 130.7 (0), 130.6 (1), 129.7 (1), 129.0 (1), 127.3 (1), 99.7 (0), 86.8 (2), 79.6 (1), 78.4 (1), 76.6 (1), 75.4 (1), 74.6 (1), 73.8 (2), 73.2 (1),
72.0 (1), 71.1 (1), 61.6 (3), 59.4 (3), 57.2 (3), 48.4 (3), 42.1 (0), 36.0 (1), 35.6 (1), 32.6 (2), 31.8 (2), 31.7 (2), 23.5 (3), 18.5 (3), 14.0 (3), 5.2 (3); $m / z\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 811\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 4 \%\right], 793$ $\left[(\mathrm{M}+\mathrm{H})^{+}, 3\right], 779\left[\left(\mathrm{M}+\mathrm{NH}_{4}-\mathrm{MeOH}\right)^{+}, 52\right], 762[(\mathrm{M}+$ $\left.\mathrm{H}-\mathrm{MeOH})^{+}, 100\right], 621$ (35), 604 (80) (EI, Found: $\mathrm{M}^{+\cdot}$, 793.2946. $\mathrm{C}_{39} \mathrm{H}_{55} \mathrm{NO}_{11} \mathrm{Se}$ requires $M, 793.2940$).

Diastereoisomer 39b ($R_{\mathrm{f}} 0.26$), $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CCl}_{4}\right) 3356$ (w), 3073 (w), 1736 (s), 1712 (s), 1603 (w), 1520 (m), 1261 (s), 1129 (s), 1110 (s), 1034 (s); $\delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right.$ referenced to 7.16 ppm) 8.33 ($2 \mathrm{H}, \mathrm{dd}, J 1.5$ and 7.8), 7.44 ($2 \mathrm{H}, \mathrm{dd}, J 1.6$ and 7.9), $7.40(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 9.3, \mathrm{NH}), 7.10-6.90(6 \mathrm{H}, \mathrm{m}), 5.97(1 \mathrm{H}, \mathrm{t}, J$ $9.7,10-\mathrm{H}), 5.85(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H}), 4.68$ ($1 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{OCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{O}$), $4.63\left(1 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{O}\right), 4.31(1 \mathrm{H}, \mathrm{dd}, J 7.0$ and 10.5 , $12-\mathrm{H}), 3.86-3.68(4 \mathrm{H}, \mathrm{m}), 3.54(1 \mathrm{H}, \mathrm{dq}, J 2.3$ and $6.6,2-\mathrm{H})$, $3.50(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.43(1 \mathrm{H}, \mathrm{dd}, J 1.7$ and $10.0,15-\mathrm{H}), 3.41$ (3 H, s, OMe), 3.29 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.25 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.03 ($1 \mathrm{H}, \mathrm{d}$, $J 10.5,13-\mathrm{H}), 2.56\left(1 \mathrm{H}, \mathrm{dd}, J 6.9\right.$ and $\left.12.0, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{SePh}\right), 2.53$ (1 H, dd, $J 9.0$ and $12.0, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{SePh}$), $2.44(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$), 2.08 (1 H, dd, $J 3.8$ and 13.2, $5-\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}$), $2.00(1 \mathrm{H}$, ddd, $J 1.5,9.6$ and 13.7, 16- $\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}$), $1.81\left(1 \mathrm{H}\right.$, ddd, $J 3.3,10.3$ and 13.6, 16- $\left.\mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right)$, $1.60\left(1 \mathrm{H}, \mathrm{t}, J 13.2,5-H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.49(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 0.94(3 \mathrm{H}, \mathrm{s}, 14-$ $\left.\mathrm{Me}_{\text {eq }}\right), 0.89\left(3 \mathrm{H}, \mathrm{s}, 14-\mathrm{Me}_{\mathrm{ax}}\right.$) $, 0.85(3 \mathrm{H}, \mathrm{d}, J 6.5,2-\mathrm{Me}), 0.58$ (3 $\mathrm{H}, \mathrm{d}, J 7.0,3-\mathrm{Me}) ; \delta_{\mathrm{C}}\left(90 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right.$ referenced to 128.4 ppm) $167.6(0), 166.0(0), 133.6$ (1), 133.4 (1), 131.4 (0), 130.8 (0), 130.6 (1), 129.7 (1), 129.0 (1), 127.4 (1), 100.0 (0), 86.7 (2), 79.6 (1), 78.7 (1), 76.3 (1), 75.7 (1), 74.3 (1), 74.0 (1), 73.4 (2), 72.0 (1), 71.1 (1), 61.7 (3), 59.7 (3), 57.2 (3), 49.3 (3), 42.2 (0), 35.8 (1), 35.3 (1), 32.4 (2), 32.1 (2), 31.2 (2), 23.3 (3), 18.4 (3), 13.7 (3), 4.6 (3); $m / z\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 811\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 8 \%\right], 793\left[(\mathrm{M}+\mathrm{H})^{+}\right.$, 4], $779\left[\left(\mathrm{M}+\mathrm{NH}_{4}-\mathrm{MeOH}\right)^{+}, 81\right], 762 \quad[(\mathrm{M}+\mathrm{H}-$ $\left.\mathrm{MeOH})^{+}, 100\right], 604$ (52) (EI, Found: $\mathrm{M}^{+\cdot}, 793.2932$. $\mathrm{C}_{39} \mathrm{H}_{55} \mathrm{NO}_{11} \mathrm{Se}$ requires $M, 793.2940$).

7-O-Benzoyl-18-O-methyl mycalamide B 40

The diastereoisomerically pure selenide 39a ($8.5 \mathrm{mg}, 0.0107$ $\mathrm{mmol})$ was dissolved in $\mathrm{MeOH}\left(0.6 \mathrm{~cm}^{3}\right)$ and then water $(0.2$ cm^{3}) was added to give a white suspension. $\mathrm{NaIO}_{4}(15 \mathrm{mg}, 0.07$ mmol) was added in one portion. After 20 min at room temp. the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(30 \mathrm{~cm}^{3}\right)$ and washed with water ($2 \times 10 \mathrm{~cm}^{3}$). The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give a crude selenoxide which was dissolved in a mixture of benzene ($0.5 \mathrm{~cm}^{3}$) and $\mathrm{Et}_{3} \mathrm{~N}$ $\left(0.5 \mathrm{~cm}^{3}\right)$ and heated at reflux for 2 min . After cooling to room temp., the reaction mixture was poured into sat. aqueōus NaHCO_{3} and extracted with $\mathrm{Et}_{2} \mathrm{O}\left(2 \times 20 \mathrm{~cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was chromatographed on $\mathrm{SiO}_{2}(0.5 \mathrm{~g}$, hexanes: AcOEt 5-40\%) to give the olefin $\mathbf{4 0}(6.5 \mathrm{mg}, 95 \%)$ as a colourless oil: $[\alpha]_{\mathrm{D}}+$ 116.0 ($c 0.325$ in benzene), $v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 3363(\mathrm{~m}), 3069(\mathrm{w})$, 1737 (s), 1709 (s), 1655 (w), 1603 (w), 1521 (m), 1264 (s), 1126 (s), 1109 (s), 1038 (s); $\delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right.$ referenced to 7.16 ppm) $8.31(2 \mathrm{H}, \mathrm{dd}, J 1.6$ and 8.4$)$, $7.49(1 \mathrm{H}$, br d, $J 9.5, \mathrm{NH})$, $7.10-7.00(3 \mathrm{H}, \mathrm{m}), 5.98(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H}), 5.96(1 \mathrm{H}, \mathrm{t}, J 9.8,10-\mathrm{H})$, $4.82\left(1 \mathrm{H}, \mathrm{t}, J 1.8,=\mathrm{CH}_{2}\right), 4.81\left(1 \mathrm{H}, \mathrm{t}, J 1.8,=\mathrm{CH}_{2}\right), 4.60(1 \mathrm{H}, \mathrm{d}$, $\left.J 6.9, \mathrm{OCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{O}\right), 4.58\left(1 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{O}\right), 4.32(1 \mathrm{H}$, dd, $J 6.7$ and $10.4,12-\mathrm{H}$), $3.82(1 \mathrm{H}, \mathrm{dq}, J 2.8$ and $6.6,2-\mathrm{H}), 3.82$ (1 H, dd, $J 6.7$ and $10.1,11-\mathrm{H}$), 3.66 ($2 \mathrm{H}, \mathrm{d}, J 3.8,18-\mathrm{H}_{2}$), 3.57 ($1 \mathrm{H}, \mathrm{ddt}, J 3.8,3.8$ and $10.0,17-\mathrm{H}$), $3.44(1 \mathrm{H}$, dd, $J 1.6$ and 9.7 , 15-H), 3.41 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.34 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.26 ($3 \mathrm{H}, \mathrm{s}$, OMe), 3.05 ($1 \mathrm{H}, \mathrm{d}, J 10.4,13-\mathrm{H}$), 2.93 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 2.91 (1 H , $\mathrm{dt}, J 1.9$ and $\left.14.0,5-\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right), 2.82\left(1 \mathrm{H}, \mathrm{d}, J 14.0,5-H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.96$ ($1 \mathrm{H}, \mathrm{dq}, J 2.8$ and $7.2,3-\mathrm{H}$), $1.87(1 \mathrm{H}$, ddd, $J 1.8,10.0$ and 14.0 , $\left.16-\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right), 1.74\left(1 \mathrm{H}, \mathrm{ddd}, J 3.8,9.8\right.$ and $\left.13.8,16-H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.14$ (3 $\mathrm{H}, \mathrm{d}, J 7.2,2-\mathrm{Me}), 0.93(3 \mathrm{H}, \mathrm{s}, 14-\mathrm{Me}), 0.93(3 \mathrm{H}, \mathrm{d}, J 6.6,3-$ $\mathrm{Me}), 0.87(3 \mathrm{H}, \mathrm{s}, 14-\mathrm{Me}) ; \delta_{\mathrm{C}}\left(90 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right.$ referenced to 128.4 ppm) 167.2 (0), 165.8 (0), 146.0 (0), 133.7 (1), 130.7 (1), 129.0 (1), 111.5 (2), 100.3 (0), 86.9 (2), 79.4 (1), 78.5 (1), 76.6 (1), 75.5 (1), 74.5 (1), 73.8 (2), 73.1 (1), 72.3 (1), 70.3 (1), 61.7 (3), 59.5 (3), 57.5 (3), 48.6 (3), 42.0 (2C, 1), 35.7 (2), 35.3 (1), 31.8 (2), 23.5 (3), 18.1 (3), 13.8 (3), $12.8(3) ; m / z\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 653\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\right.$,
$3 \%], 621\left[\left(\mathrm{M}+\mathrm{NH}_{4}-\mathrm{MeOH}\right)^{+}, 26\right], 604[(\mathrm{M}+\mathrm{H}-$ $\mathrm{MeOH})^{+}$, 100] (EI, Found: $\mathrm{M}^{+\cdot}$, 635.3328. $\mathrm{C}_{33} \mathrm{H}_{49} \mathrm{NO}_{11}$ requires $M, 635.3306$).

18-O-Methyl mycalamide B 6

LiOH ($0.2 \mathrm{~cm}^{3}, 1 \mathrm{~mol} \mathrm{dm}^{-3}$ in $\mathrm{H}_{2} \mathrm{O}$) was added to a solution of the ester $40(4.9 \mathrm{mg}, 0.008 \mathrm{mmol})$ in $\mathrm{MeOH}\left(1 \mathrm{~cm}^{3}\right)$. The reaction mixture was stirred at room temp. for 30 min , diluted with benzene ($20 \mathrm{~cm}^{3}$), washed successively with water (2×5 $\left.\mathrm{cm}^{3}\right)$ and brine $\left(5 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by chromatography on $\mathrm{SiO}_{2}(0.15 \mathrm{~g}$, benzene: AcOEt $0-50 \%$) to give 18 -O-methyl mycalamide B 6 [$3.8 \mathrm{mg}, 92 \%, R_{f} 0.19$ (benzene: $\mathrm{EtOAc}=1: 1$)] as a colourless oil, $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 3451$ (w), 3418 (w), 3354 (m), 3081 (w), 1687 (s), 1531 (m), 1128 (s), 1110 (s), 1038 (s); $\delta_{\mathrm{H}}(360 \mathrm{MHz}$, $\mathrm{C}_{6} \mathrm{D}_{6}$ referenced to 7.16 ppm$) 7.70(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 9.4, \mathrm{NH}), 5.97$ $(1 \mathrm{H}, \mathrm{t}, J 9.8,10-\mathrm{H}), 4.79\left(1 \mathrm{H}, \mathrm{t}, J 2.0,=\mathrm{CH}_{2}\right), 4.74(1 \mathrm{H}, \mathrm{t}, J 2.0$, $\left.=\mathrm{CH}_{2}\right), 4.64\left(1 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{OCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{O}\right), 4.60(1 \mathrm{H}, \mathrm{d}, J 6.9$, $\mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{O}, 4.30(1 \mathrm{H}, \mathrm{dd}, J 6.9$ and $10.6,12-\mathrm{H}), 4.23(2 \mathrm{H}, \mathrm{m}, 7-$ H and OH$), 3.89(1 \mathrm{H}, \mathrm{dq}, J 2.7$ and $6.5,2-\mathrm{H}), 3.81(1 \mathrm{H}, \mathrm{dd}, J$ 6.9 and $9.9,11-\mathrm{H}), 3.60\left(1 \mathrm{H}, \mathrm{dd}, J 5.4\right.$ and $\left.10.5,18-\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right), 3.58$ $\left(1 \mathrm{H}, \mathrm{dd}, J 2.5\right.$ and $\left.10.5,18-H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.50(1 \mathrm{H}, \mathrm{m}, 17-\mathrm{H}), 3.41(1$ $\mathrm{H}, \mathrm{dd}, J 2.0$ and $9.7,15-\mathrm{H}), 3.36(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.33(3 \mathrm{H}, \mathrm{s}$, OMe), 3.27 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.11 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $3.05(1 \mathrm{H}, \mathrm{d}, J$ $10.5,13-\mathrm{H}), 2.70\left(1 \mathrm{H}, \mathrm{d}, J 14.0,5-\mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.48(1 \mathrm{H}, \mathrm{dt}, J 2.0$ and $\left.14.1,5-\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right), 1.94(1 \mathrm{H}, \mathrm{dq}, J 2.9$ and $7.1,3-\mathrm{H}), 1.78(1 \mathrm{H}$, ddd, $J 2.0,9.7$ and 14.1, 16- $\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}$), $1.69(1 \mathrm{H}$, ddd, $J 3.9,9.8$ and $\left.13.8,16-H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.00(3 \mathrm{H}, \mathrm{d}, J 7.1,2-\mathrm{Me}), 0.87(3 \mathrm{H}, \mathrm{s}, 14-\mathrm{Me})$, $0.862(3 \mathrm{H}, \mathrm{d}, J 6.4,3-\mathrm{Me}), 0.858(3 \mathrm{H}, \mathrm{s}, 14-\mathrm{Me}) ; \delta_{\mathrm{c}}(90 \mathrm{MHz}$, $\mathrm{C}_{6} \mathrm{D}_{6}$ referenced to 128.4 ppm$) 172.8(0), 146.3(0), 111.3$ (2), 101.0 (0), 86.8 (2), 79.4 (1), 78.6 (1), 76.5 (1), 75.5 (1), 74.6 (1), 74.1 (2), 72.5 (1), 72.1 (1), 69.7 (1), 61.7 (3), 59.5 (3), 57.5 (3), 48.6 (3), 42.1 (1), 42.0 (0), 34.6 (2), 31.6 (2), 23.4 (3), 18.2 (3), 14.9 (3), 12.9 (3); $m / z\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 549\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 0.5 \%\right]$, $532\left[(\mathrm{M}+\mathrm{H})^{+}, 0.5\right], 517\left[\left(\mathrm{M}+\mathrm{NH}_{4}-\mathrm{MeOH}\right)^{+}, 5\right], 500$ $\left[(\mathrm{M}+\mathrm{H}-\mathrm{MeOH})^{+}, 100\right]$ (EI, Found: $\mathrm{M}^{+\bullet,}$, 531.3022. $\mathrm{C}_{26} \mathrm{H}_{45} \mathrm{NO}_{10}$ requires $M, 531.3043$).

10-epi-18-O-Methyl mycalamide B 41 was prepared from ester $\mathbf{3 5 b}$ and the dihydro- 2 H -pyranyllithium 9 as summarised in Scheme 8.

Coupling product 42

By the same procedure as described above stannane 36 (42 mg , $0.0946 \mathrm{mmol})$ and ester $35 \mathrm{~b}(12.5 \mathrm{mg})$ gave the adduct 42 [9.4 $\mathrm{mg}, 47 \%, R_{\mathrm{f}} 0.47$ (benzene : $\mathrm{AcOEt}=7: 3$) $]$ as a pale yellow oil; $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 3410(\mathrm{~m}), 1702(\mathrm{~m}), 1673(\mathrm{~s}), 1614(\mathrm{w}), 1506(\mathrm{~s})$, $1108(\mathrm{~s}), 1038(\mathrm{~s}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.07(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 9.3$, NH), $7.55-7.48(2 \mathrm{H}, \mathrm{m}), 7.35-7.25(3 \mathrm{H}, \mathrm{m}), 6.93(1 \mathrm{H}, \mathrm{t}, J 1.7$, $5-\mathrm{H}), 5.42(1 \mathrm{H}$, dd, $J 1.6$ and $19.1,10-\mathrm{H}), 5.14(1 \mathrm{H}, \mathrm{d}, J 6.6$, $\left.\mathrm{OCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{O}\right), 4.87\left(1 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{O}\right), 4.09(1 \mathrm{H}, \mathrm{dq}, J$ 1.4 and $6.6,2-\mathrm{H}), 3.77(2 \mathrm{H}, \mathrm{d}, J 1.4,11-\mathrm{H}, 12-\mathrm{H}), 3.69(1 \mathrm{H}$, dd, $J 2.7$ and $12.9,15-\mathrm{H}), 3.64\left(1 \mathrm{H}\right.$, dd, $J 3.5$ and $\left.10.6,18-\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right)$, $3.52\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.9\right.$ and $10.6,18-\mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$) , 3.40-3.25 ($1 \mathrm{H}, \mathrm{m}$), 3.40 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.38 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.33 ($3 \mathrm{H}, \mathrm{s}$, OMe), $3.00-2.80$ $(4 \mathrm{H}, \mathrm{m}), 2.35\left(1 \mathrm{H}\right.$, ddd, $J 4.5,12.4$ and $\left.14.9,16-\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right), 2.03(1$ $\mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 1.73\left(1 \mathrm{H}\right.$, ddd, $J 3.3,8.9$ and $14.9,16-H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$), 1.38 ($3 \mathrm{H}, \mathrm{d}, J 6.4,2-\mathrm{Me}$), $1.24\left(3 \mathrm{H}, \mathrm{s}, 14-\mathrm{Me}_{\mathrm{eq}}\right.$), $0.96(3 \mathrm{H}, \mathrm{s}, 14-$ $\left.\mathrm{Me}_{\mathrm{ax}}\right), 0.78(3 \mathrm{H}, \mathrm{d}, J 7.0,3-\mathrm{Me}) ; \delta_{\mathrm{C}}\left(67.5 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right.$ referenced to 128.4 ppm$), 181.7(0), 161.4(0), 149.2(0), 133.7(1), 130.7(0)$, 129.8 (1), 127.6 (1), 123.4 (1), 91.9 (2), 84.7 (1), 79.6 (1), 79.2 (1), 77.8 (1), 76.7 (1), 73.5 (2), 73.3 (1), 62.1 (1), 59.4 (3), 59.2 (3), 57.5 (3), 39.5 (1), 37.2 (0), 33.7 (1), 29.82 (2), 29.79 (2), 28.2 (3), 22.7 (3), 18.4 (3), 6.1 (3); $m / z\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 673\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\right.$, $28 \%], 656\left[(\mathrm{M}+\mathrm{H})^{+}, 60\right], 515\left[\left(\mathrm{M}+\mathrm{NH}_{4}-\mathrm{PhSeH}\right)^{+}, 37\right]$, $498\left[(\mathrm{M}+\mathrm{H}-\mathrm{PhSeH})^{+}, 100\right]$ (EI, Found: $\mathrm{M}^{+}, 655.2247$. $\mathrm{C}_{31} \mathrm{H}_{45} \mathrm{NO}_{9} \mathrm{Se}$ requires $M, 655.2260$).

Benzoate 43

By the same procedure as described above ketone $42(17 \mathrm{mg}$, 0.026 mmol) was reduced by L-Selectride ${ }^{17}$, and the product
treated with CSA and MeOH followed by BzCl to give a $20: 1$ mixture of two discernible diastereoisomers ($14 \mathrm{mg}, 68 \%$) as a colourless oil. The 7-H signal appeared at $\delta 5.49$ for the major diastereoisomer 43 and at $\delta 5.43$ for the minor. The data given below collected on the mixture refer to the major isomer, $\delta_{\mathrm{H}}(270$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.10(2 \mathrm{H}, \mathrm{dd}), 8.08(1 \mathrm{H}, \mathrm{br}$ d, $J 9.5, \mathrm{NH}), 7.65-$ $7.40(5 \mathrm{H}, \mathrm{m}), 5.49(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H}), 7.20-7.35(3 \mathrm{H}, \mathrm{m}), 5.37(1 \mathrm{H}$, dd, $J 2.3$ and $9.5,10-\mathrm{H}), 5.02\left(1 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{OCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{O}\right), 4.76(1$ $\left.\mathrm{H}, \mathrm{d}, J 6.6, \mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{O}\right), 4.02(1 \mathrm{H}, \mathrm{dq}, J 2.5$ and $6.6,2-\mathrm{H}), 3.80-$ $3.65(2 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}, 12-\mathrm{H}), 3.58(1 \mathrm{H}, \mathrm{dd}, J 2.7$ and $11.8,15-\mathrm{H}$), 3.45-3.55 ($2 \mathrm{H}, \mathrm{m}$), 3.44 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.42 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.40$3.30(1 \mathrm{H}, \mathrm{m}), 3.38(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.18$ ($3 \mathrm{H}, \mathrm{s}, 6-\mathrm{OMe}$), 2.91 (1 H , dd, $J 6.5$ and 12.2, $\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{SePh}$), 2.91 ($\left.1 \mathrm{H}, \mathrm{d}, J 2.5,13-\mathrm{H}\right)$, $2.84\left(1 \mathrm{H}\right.$, dd, $J 9.5$ and $\left.12.2, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{SePh}\right), 2.45-2.25(1 \mathrm{H}, \mathrm{m})$, $2.37\left(1 \mathrm{H}\right.$, ddd, $J 4.6,12.0$ and $\left.15.6,16-\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right), 1.95(1 \mathrm{H}$, dd, J 3.5 and $13.5,5-\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}$), $1.84(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 1.67(1 \mathrm{H}$, ddd, $J 3.3$, 7.0 and $\left.15.3,16-H_{A} H_{B}\right), 1.53\left(1 \mathrm{H}, \mathrm{t}, J 13.5,5-H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.28(3 \mathrm{H}$, $\mathrm{d}, J 6.6,2-\mathrm{Me}), 1.23\left(3 \mathrm{H}, \mathrm{s}, 14-\mathrm{Me}_{\mathrm{eq}}\right), 0.96\left(3 \mathrm{H}, \mathrm{s}, 14-\mathrm{Me}_{\mathrm{ax}}\right)$, 0.87 ($3 \mathrm{H}, \mathrm{d}, J 7.1,3-\mathrm{Me}$).

10-epi-18-O-Methyl mycalamide 41

To a mixture of selenide $\mathbf{4 3}(14.5 \mathrm{mg}, 0.018 \mathrm{mmol})$ in MeOH and water ($3: 1,2 \mathrm{~cm}^{3}$) was added $\mathrm{NaIO}_{4}(15 \mathrm{mg}, 0.07 \mathrm{mmol})$ in one portion. The reaction mixture was stirred at room temp. for 20 min and then diluted with $\mathrm{Et}_{2} \mathrm{O}\left(50 \mathrm{~cm}^{3}\right)$. The organic layer was washed with water ($2 \times 10 \mathrm{~cm}^{3}$) and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give the crude selenoxide as a pale brown oil. The selenoxide (14 mg) in benzene ($2.5 \mathrm{~cm}^{3}$) and $\mathrm{Et}_{3} \mathrm{~N}\left(1 \mathrm{~cm}^{3}\right)$ was heated at reflux for 2 min , cooled to room temp., poured into sat. aqueous NaHCO_{3} and extracted with $\mathrm{Et}_{2} \mathrm{O}\left(2 \times 30 \mathrm{~cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give a crude olefin (14 mg) which was treated with $\mathrm{MeOH}\left(2.5 \mathrm{~cm}^{3}\right)$ and $\mathrm{LiOH}\left(1 \mathrm{~mol} \mathrm{dm}^{-3}\right)$ in $\mathrm{H}_{2} \mathrm{O}\left(0.5 \mathrm{~cm}^{3}\right)$. The reaction mixture was stirred at room temp. for 45 min and concentrated. The residue was taken up in $\mathrm{Et}_{2} \mathrm{O}$ ($25 \mathrm{~cm}^{3}$) and washed with water ($2 \times 10 \mathrm{~cm}^{3}$) and brine. The extract was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was chromatographed on $\mathrm{SiO}_{2}(1 \mathrm{~g}$, hexanes: AcOEt $30-100 \%)$ to give the 10 -epi-18-O-methyl mycalamide $41\left[6.3 \mathrm{mg}, 67 \%, R_{\mathrm{f}}\right.$ 0.25 (benzene: $\mathrm{AcOEt}=1: 1)]$ as a colourless oil, $v_{\max }\left(\mathrm{CCl}_{4}\right)$) $\mathrm{cm}^{-1} 3430$ (m), 3099 (w), 1692 (m), 1604 (w), 1520 (m), 1263 (m), $1104(\mathrm{~s}), 1038(\mathrm{~s}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right.$, referenced to 7.20 $\mathrm{ppm}) 8.54(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 9.3, \mathrm{NH}), 5.37(1 \mathrm{H}, \mathrm{dd}, J 2.2$ and $9.7,10-\mathrm{H}), 4.88\left(1 \mathrm{H}, \mathrm{t}, J 1.9,=\mathrm{CH}_{2}\right), 4.84(1 \mathrm{H}, \mathrm{d}, J 6.4$, $\left.\mathrm{OCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{O}\right), 4.80\left(1 \mathrm{H}, \mathrm{t}, J 1.9,=\mathrm{CH}_{2}\right), 4.48(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.35(1$ $\left.\mathrm{H}, \mathrm{d}, J 6.6, \mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{O}\right), 4.08(1 \mathrm{H}, \mathrm{dq}, J 2.9$ and $6.6,2-\mathrm{H}), 3.69$ ($1 \mathrm{H}, \mathrm{dd}, J 3.0$ and $11.8,15-\mathrm{H}), 3.59(1 \mathrm{H}, \mathrm{br}$ s), $3.55-3.40(2 \mathrm{H}$, m), $3.40-3.20(2 \mathrm{H}, \mathrm{m}), 3.35(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.29(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $3.20(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.95(3 \mathrm{H}, \mathrm{s}, 6-\mathrm{OMe}), 2.74(1 \mathrm{H}, \mathrm{d}, J 2.1,13-$ $\mathrm{H}), 2.66\left(1 \mathrm{H}, \mathrm{d}, J 13.9,5-\mathrm{H}_{\mathrm{eq}}\right), 2.53(1 \mathrm{H}, \mathrm{dt}, J 1.8$ and $13.9,5-$ $\left.\mathrm{H}_{\mathrm{ax}}\right), 2.43\left(1 \mathrm{H}\right.$, ddd, $J 4.6,11.8$ and $\left.16.0,16-\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right), 2.12(1 \mathrm{H}$, $\mathrm{dq}, J 2.9$ and $7.3,3-\mathrm{H}$), $1.84(1 \mathrm{H}$, ddd, $J 3.2,4.8$ and $15.5,16-$ $\left.H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.42\left(3 \mathrm{H}, \mathrm{s}, 14-\mathrm{Me}_{\mathrm{eq}}\right), 1.39(3 \mathrm{H}, \mathrm{d}, J 7.3,3-\mathrm{Me}), 1.28$ (3 $\mathrm{H}, \mathrm{d}, J 6.6,2-\mathrm{Me}), 0.97\left(3 \mathrm{H}, \mathrm{s}, 14-\mathrm{Me}_{\mathrm{ax}}\right) ; \delta_{\mathrm{c}}\left(62.5 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right.$ referenced to 128.4 ppm$) 173.1$ (0), 146.9 (0), 110.9 (2), 101.0 (0), 91.6 (2), 84.5 (1), 80.4 (1), 79.7 (1), 78.2 (1), 75.4 (2), 72.8 (1), 71.3 (1), 70.1 (1), 61.5 (1), 59.3 (3), 59.2 (3), 57.9 (3), 48.3 (3), 42.6 (1), 37.1 (0), 33.7 (2), 30.0 (2), 28.0 (3), 23.5 (3), 18.5 (3), $12.7(3) ; m / z\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 549\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 0.5 \%\right], 532[(\mathrm{M}+$ $\left.\mathrm{H})^{+}, 0.5\right], 517\left[\left(\mathrm{M}+\mathrm{NH}_{4}-\mathrm{MeOH}\right)^{+}, 10\right], 500[(\mathrm{M}+\mathrm{H}-$ $\mathrm{MeOH})^{+}, 100$] [Found: $\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$, 549.3409. $\mathrm{C}_{26} \mathrm{H}_{49}{ }^{-}$ $\mathrm{N}_{2} \mathrm{O}_{10}$ requires $\left.M, 549.3387\right]$.

Acknowledgements

We thank Zeneca Pharmaceuticals, Cancer Research Campaign, the Royal Society and the EPSRC for financial support. We also thank Miss Loretta Wong for valuable technical assistance.

References

1 N. B. Perry, J. W. Blunt, M. H. G. Munro and L. K. Pannell, J. Am. Chem. Soc., 1988, 110, 4850.
2 N. B. Perry, J. W. Blunt, M. H. G. Munro and A. M. Thompson, J. Org. Chem., 1990, 55, 223.

3 C. Cardani, D. Ghiringhelli, R. Mondelli and A. Quilico, Tetrahedron Lett., 1965, 2537.
4 T. Matsumoto, M. Yanagiya, S. Maeno and S. Yasuda, Tetrahedron Lett., 1968, 6297.
5 C. Y. Hong and Y. Kishi, J. Org. Chem., 1990, 55, 4242.
6 S. Sakemi, T. Ichiba, S. Kohmoto, G. Saucy and T. Higa, J. Am. Chem. Soc., 1988, 110, 4851.
7 J. Kobayashi, F. Itagaki, H. Shigemori and T. Sasaki, J. Natural Products-Lloydia, 1993, 56, 976.
8 N. Fusetani, T. Sugawara and S. Matsunaga, J. Org. Chem., 1992, 57, 3828.
9 N. Fusetani and S. Matsunaga, Chem. Rev., 1993, 93, 1793.
10 F. Galvin, G. J. Freeman, Z. Raziwolf, B. Benacerraf, L. Nadler and H. Reiser, Eur. J. Immunol., 1993, 23, 283.

11 N. S. Burres and J. J. Clement, Cancer Research, 1989, 49, 2935.
12 A. M. Thompson, J. W. Blunt, M. H. G. Munro, N. B. Perry and L. K. Pannell, J. Chem. Soc., Perkin Trans. I, 1992, 1335.

13 A. M. Thompson, J. W. Blunt, M. H. G. Munro and B. M. Clark, J. Chem. Soc., Perkin Trans. 1, 1994, 1025.

14 A. M. Thompson, J. W. Blunt, M. H. G. Munro and N. B. Perry, J. Chem. Soc., Perkin Trans. 1, 1995, 1233.

15 C. Y. Hong and Y. Kishi, J. Am. Chem. Soc., 1991, 113, 9693.
16 W. R. Roush and T. G. Marron, Tetrahedron Lett., 1993, 34, 5421.

17 T. Nakata, H. Matsukura, D. L. Jian and H. Nagashima, Tetrahedron Lett., 1994, 35, 8229.
18 T. G. Marron and W. R. Roush, Tetrahedron Lett., 1995, 36, 1581.
19 R. W. Hoffmann and A. Schlapbach, Tetrahedron Lett., 1993, 34, 7903.

20 P. Kocienski, K. Jarowicki and S. Marczak, Synthesis, 1991, 1191.
21 T. M. Willson, P. Kocienski, K. Jarowicki, K. Isaac, P. M. Hitchcock, A. Faller and S. F. Campbell, Tetrahedron, 1990, 46, 1767.

22 G. M. Rubottom, M. A. Vasquez and D. R. Pelegrino, Tetrahedron Lett., 1974, 49, 4319.
23 G. M. Rubottom and R. Marrero, J. Org. Chem., 1975, 40, 3783.
24 G. B. Payne, J. Org. Chem., 1962, 18, 763.
25 F. A. Davis and A. C. Sheppard, Tetrahedron, 1989, 45, 5703.
26 W. Adam, L. Hadjiarapoglou and X. Wang, Tetrahedron Lett., 1989, 30, 6497.
27 W. Adam, R. Curci and J. O. Edwards, Acc. Chem. Res., 1989, 22, 205.

28 R. Curci, M. Fiorentino, L. Troisi, J. O. Edwards and R. H. Pater, J. Org. Chem., 1980, 45, 4758.

29 M. Isobe, M. Kitamura and T. Goto, Tetrahedron Lett., 1979, 3465.

30 M. Shibasaki, Y. Ishida and N. Okabe, Tetrahedron Lett., 1985, 26, 2217.

31 R. A. Holton, R. R. Juo, H. B. Kim, A. D. Williams, S. Harusawa, R. E. Lowenthal and S. Yogai, J. Am. Chem. Soc., 1988, 110, 6558.

32 R. G. Saloman, N. D. Sachinvala, S. Roy, B. Basu, S. R. Raychauduri, D. B. Miller and R. B. Sharma, J. Am. Chem. Soc., 1991, 113, 3085.
33 P. J. Belshaw, J. G. Schoepfer, K.-Q. Liu, K. L. Morrison and S. L. Schreiber, Angew. Chem., Int. Ed. Engl., 1995, 34, 2129.

34 K. Maruoka, M. Sakurai and H. Yamamoto, Tetrahedron Lett., 1985, 26, 3853.
35 H. Yamamoto, in Organoaluminium Compounds, ed. M. Schlosser, Chichester, 1994.
36 E. J. Corey and J. W. Suggs, J. Org. Chem., 1973, 38, 3224.
37 H. Loibner and E. Zbiral, Helv. Chim. Acta, 1976, 59, 2100.
38 R. Noyori, I. Nishida, J. Sakata and M. Nishizawa, J. Am. Chem. Soc., 1980, 102, 1223.
39 R. B. Woodward, J. Gosteli, I. Ernest, R. J. Friary, G. Nestlet, H. Raman, R. Sitrin, C. Suter and J. K. Whitesell, J. Am. Chem. Soc., 1973, 95, 6853.
40 A. B. Smith and M. Iwashima, Tetrahedron Lett., 1994, 35, 6051.

Paper 6/01469K
Received 1st March 1996
Accepted 28th March 1996

[^0]: ** Similar observations were made by Hong and Kishi for an analogous reduction performed in their synthesis of onnamide. ${ }^{15}$

